

Work Packages 2, 3 & 4A - Technical Report Appendices 1-6, 9

IBE0071/June 2010

rpsgroup.com/ireland

Appendices

Appendix 1: Storm Track Figures

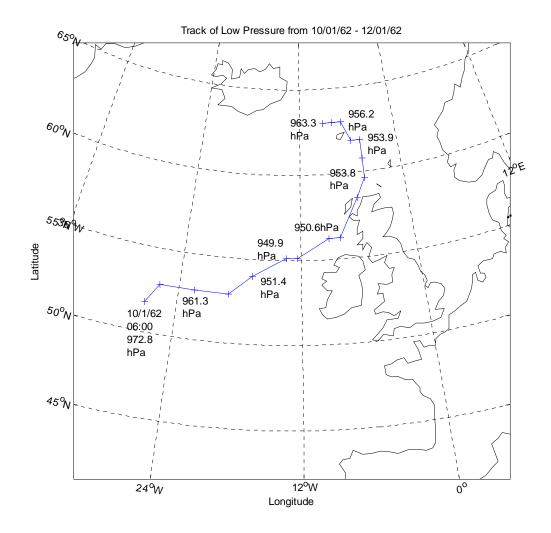


Figure 1: Centre of storm from 10/01/62 - 12/01/62 plotted at 3 hourly intervals, resulting in maximum surge level of 0.764m. in Dublin Bay.

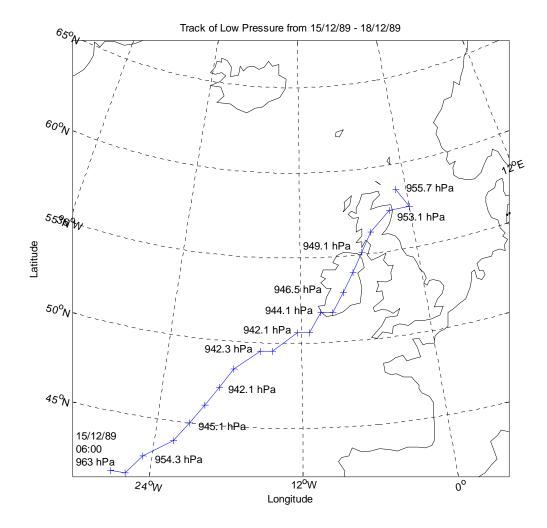


Figure 2: Centre of storm from 15/12/89 - 18/12/89 plotted at 3 hourly intervals, resulting in maximum surge level of 0.937m. in Dublin Bay.

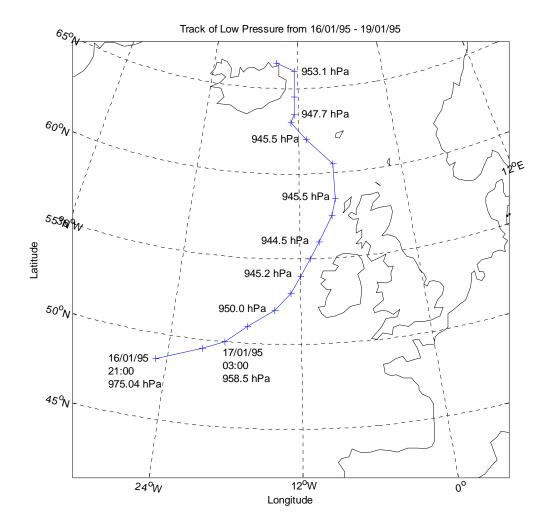
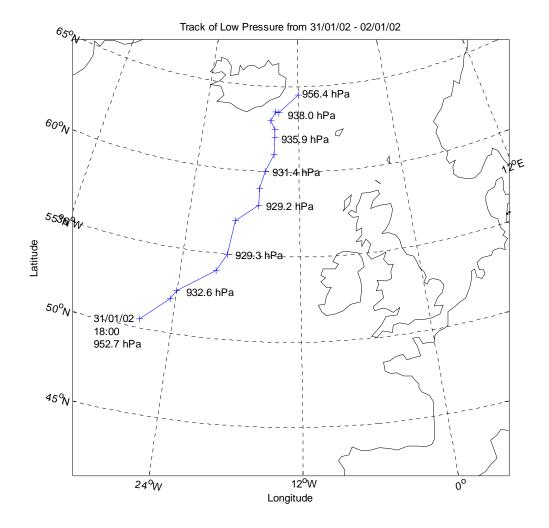
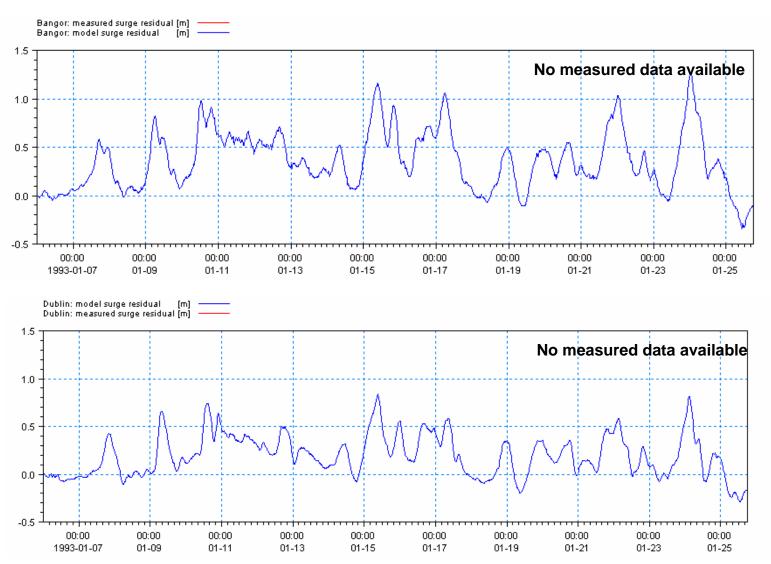
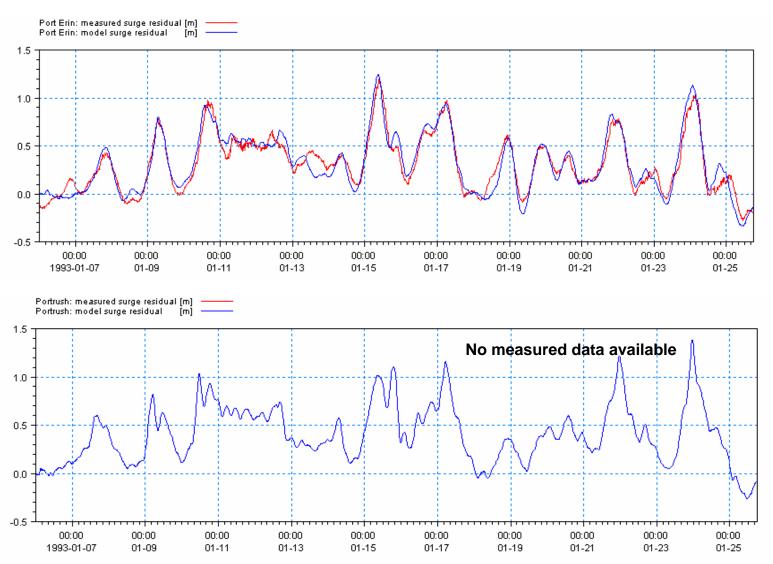
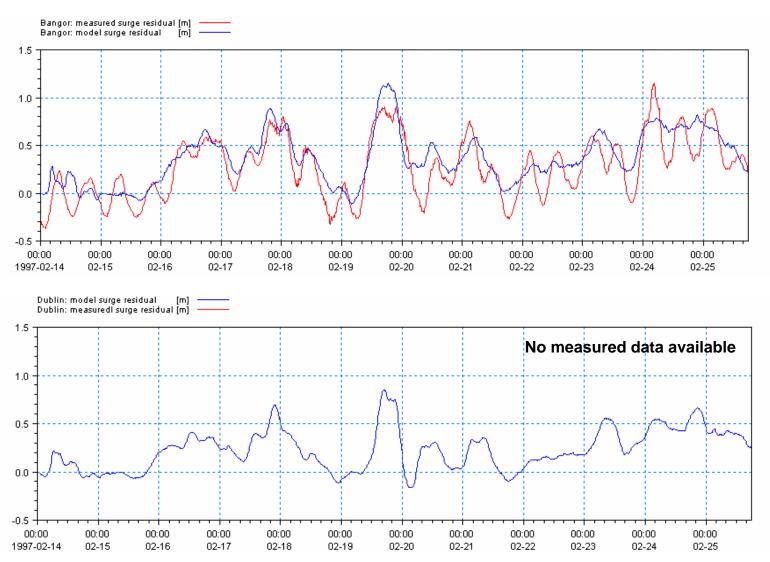


Figure 3: Centre of storm from 16/01/95 - 19/01/95 plotted at 3 hourly intervals, resulting in maximum surge level of 0.752m. in Dublin Bay.

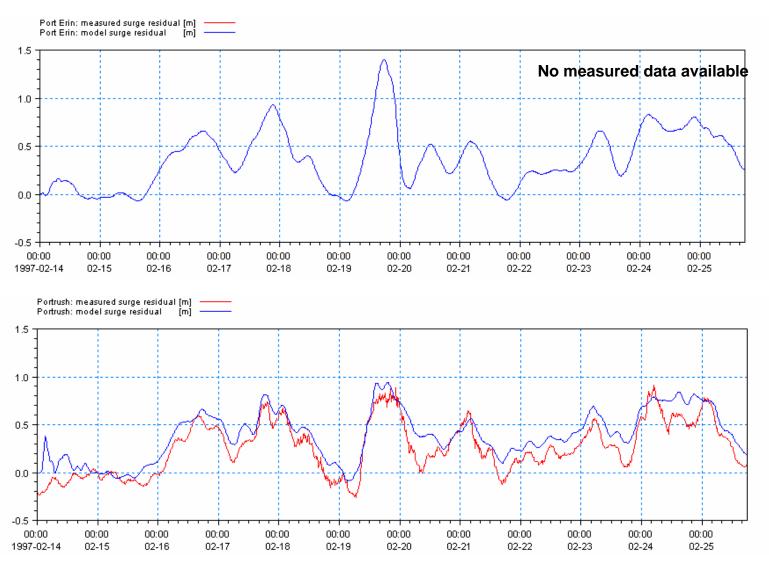



Figure 4 : Centre of storm from 31/01/02 - 02/02/02 plotted at 3 hourly intervals, resulting in maximum surge level of 0.912m. in Dublin Bay.

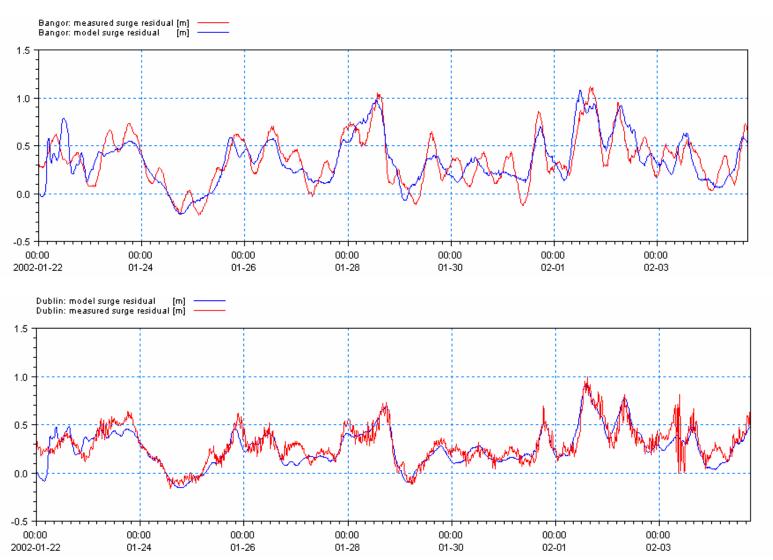

Appendix 2: Validation Figures of Storm Surge Simulation



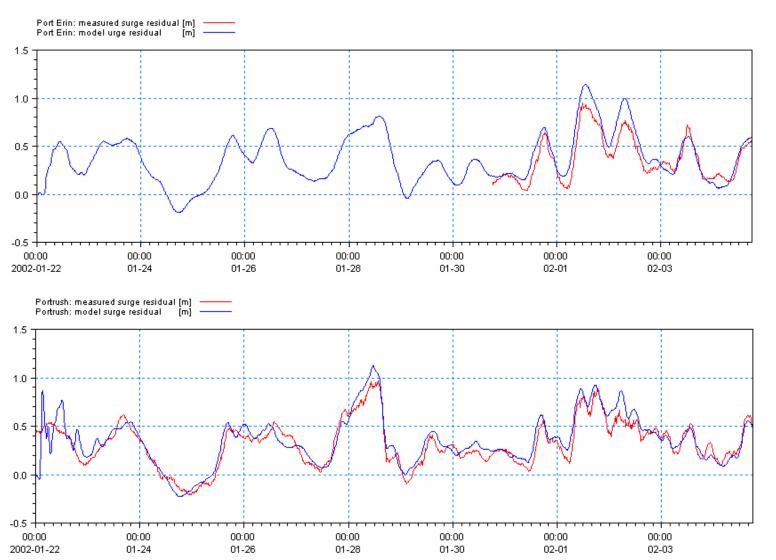
Validation Figures of Storm Surge Simulation: January 1993



Validation Figures of Storm Surge Simulation: January 1993



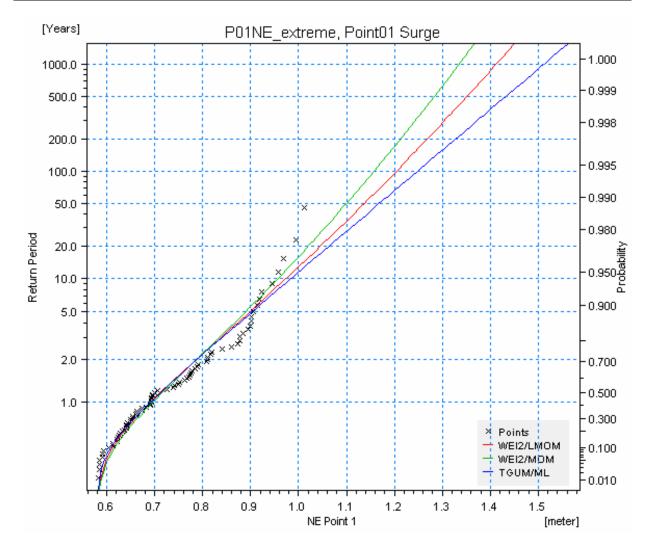
Validation Figures of Storm Surge Simulation: February 1997



Validation Figures of Storm Surge Simulation: February 1997

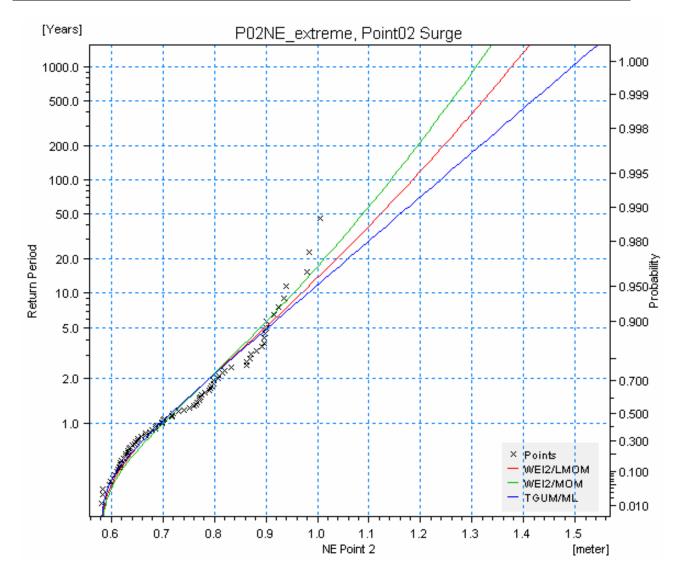
Validation Figures of Storm Surge Simulation: January 2002

Validation Figures of Storm Surge Simulation: January 2002


Appendix 3: Extreme Value Analysis of surge residual: Points 1 – 3, 7-16, 18-26

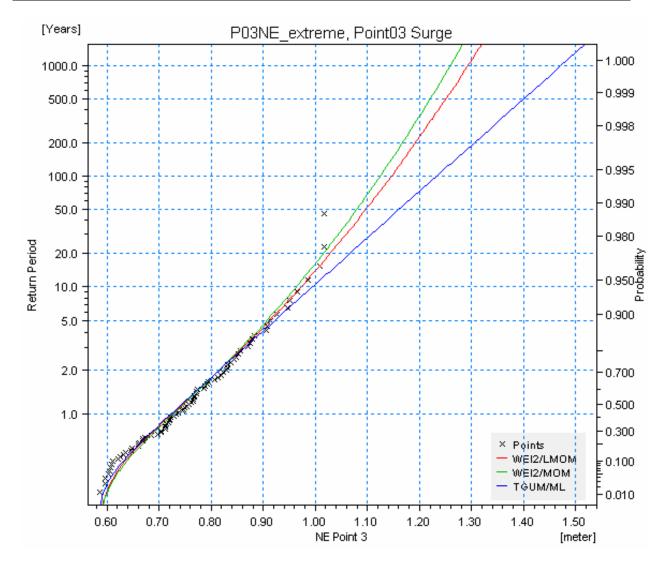
			ICPSS III S	Surge				
	-	-	Point 0	-				
			-		Combinati			-
	Return Period [years]	WEI2/LMOM	WEI2/ML	WEI2/MOM	TGUM/ML	GAM/MOM	GAM/LMOM	GAM/ML
Estimated	5	0.885	0.89	0.877	0.889	0.872	0.883	0.9
quantile	10	0.968	0.981	0.952	0.978	0.951	0.972	1.008
	25	1.067	1.091	1.039	1.087	1.047	1.081	1.142
	50	1.137	1.169	1.099	1.168	1.116	-	
	100	1.203	1.245	1.157	1.248	1.184	1.238	
	200	1.268	1.319	1.212	1.327	1.251	1.315	
	1000	1.412	1.485	1.334	1.51	1.403	-	1.658
Average quantile	5	0.885	0.891	0.878	0.891	0.873		0.902
	10	0.968	0.983	0.952	0.98	0.951	0.971	1.011
	25	1.066	1.093	1.039	1.09	1.047	1.08	
	50	1.134	1.172	1.1	1.171	1.117	1.159	1.247
	100	1.2	1.247	1.157	1.251	1.184	1.236	
	200	1.264	1.321	1.212	1.331	1.251	1.313	
	1000	1.405	1.486	1.333	1.515	1.404	1.488	1.671
Standard	5	0.02	0.022	0.019	0.023	0.019		0.024
deviation	10	0.024	0.03	0.022	0.029	0.022	0.025	
	25	0.032	0.045	0.027	0.038	0.027	0.032	0.049
	50	0.039	0.058	0.032	0.045	0.032	0.038	
	100	0.047	0.072	0.037	0.052	0.037	0.045	
	200	0.056	0.087	0.042	0.06	0.041	0.052	0.087
	1000	0.077	0.123	0.056	0.077	0.054	0.068	
Goodness-of-fit	CHISQ	5.43	11.506	8.468	6.443	11	8.722	11
statistics	KS	0.075	0.083	0.084	0.071	0.089		0.091
	SLSC	0.046	0.05	0.043	0.044	0.047	0.047	0.057
	PPCC1	0.98	0.975	0.984	0.976	0.977	0.973	0.964
	PPCC2	0.973	0.969	0.977	0.976	0.977	0.973	
	LLM	67.497	67.755	66.565	68.812	60.837	64.608	66.676

	Client: OPW	
RPS Consulting Engineers	Project: ICPSS, Phase 3	
Date: 02/05/08	Probability table	Drawing no.
Init: C.Robinson		CR0071


	_	Client: OPW	
RPS Consult	ing Engineer	Project: ICPSS, Phase 3	
D	ate: 02/05/08	Probability plot	Drawing no.
Ir	it: C.Robinson	-	CR0071

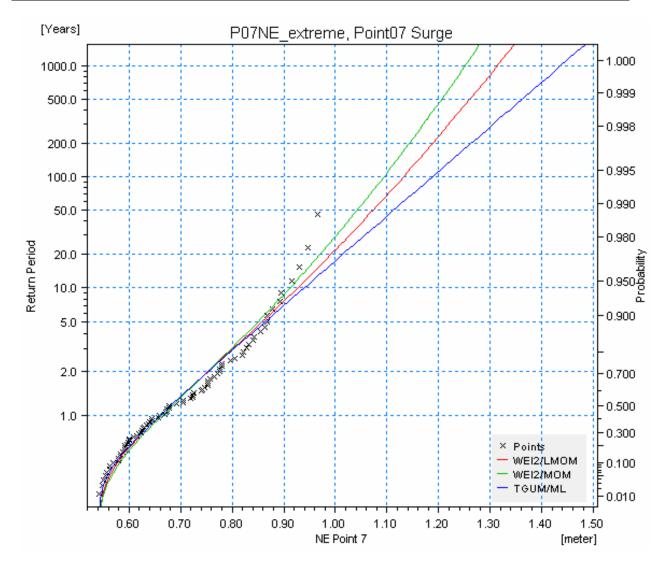
	ICPSS III Surge							
			Point 0	2				
					Combinati	-		
	Return Period [years]	WEI2/LMOM	WEI2/ML	WEI2/MOM	TGUM/ML	GAM/MOM	GAM/LMOM	GAM/ML
Estimated	5	0.885	0.886	0.877	0.89	0.872	0.883	0.897
quantile	10	0.964	0.969	0.949	0.976	0.948	0.968	0.996
	25	1.057	1.067	1.031	1.082	1.04		
	50	1.122	1.136	1.088	1.16	1.107	1.149	1.21
	100	1.184	1.202	1.142	1.238	1.172	1.223	
	200	1.244	1.266	1.194	1.315	1.236		1.388
	1000	1.376	1.408	1.307	1.493	1.381	1.465	
Average quantile	5	0.885	0.888	0.878	0.891	0.872	0.883	
	10		0.972	0.949	0.978	0.948	0.968	
	25	1.056	1.071	1.031	1.085	1.041	1.072	1.127
	50		1.141	1.088	1.163	1.107	1.147	1.219
	100	1.181	1.207	1.142	1.241	1.172	1.221	1.31
	200	1.24	1.272	1.194	1.318	1.236		
	1000	1.37	1.415	1.306	1.497	1.381	1.462	1.608
Standard	5	0.019	0.02	0.018	0.022	0.018		
deviation	10			0.021	0.027	0.021	0.023	
	25		0.039	0.026	0.035	0.026		
	50	0.036	0.049	0.03	0.042	0.03		
	100		0.06	0.035	0.048	0.035		0.069
	200	0.051	0.072	0.04	0.055	0.039		
0	1000	0.071	0.099	0.054	0.07	0.051	0.064	
Goodness-of-fit	CHISQ	7.709	7.962	9.481	9.734	12.772	7.203	
statistics	KS	0.097	0.103	0.091	0.094	0.106		
	SLSC	0.046	0.049	0.043	0.045	0.048		
	PPCC1	0.98	0.978	0.984	0.976	0.976		0.965
	PPCC2	0.973	0.971	0.977	0.976	0.976		0.965
	LLM	67.935	68.005	67.335	68.379	62.211	65.254	66.557

	Client: OPW	Zero
RPS Consulting Engineers	Project: ICPSS, Phase 3	MIKE
Date: 02/05/08	Probability table	Drawing no.
Init: C.Robinson		CR0071


	Client: OPW	
RPS Consulting Engir	ICPSS, Phase 3	
Date: 02/05/08	Probability plot	Drawing no.
Init: C.Robins	son	CR0071

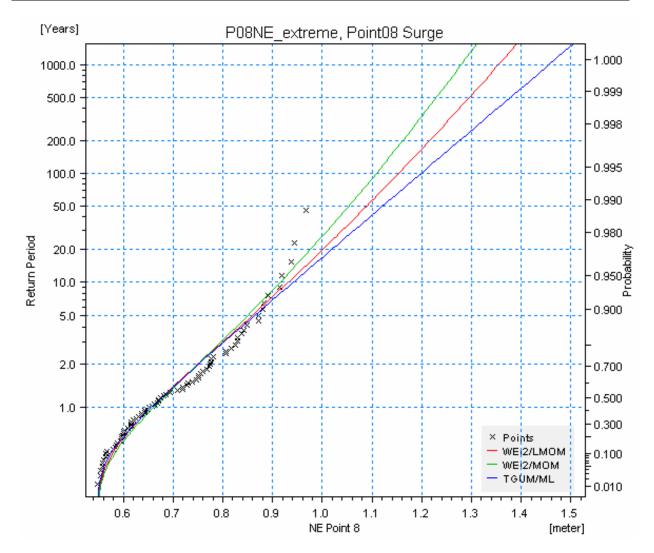
			ICPSS III S	Surge				
			Point 0	-				
					E Combinati	•••		
	Return Period [years]	WEI2/LMOM	WEI2/ML	WEI2/MOM	TGUM/ML	GAM/MOM	GAM/LMOM	GAM/ML
Estimated	5	0.901	0.901	0.896	0.909	0.891	0.898	0.914
quantile	10	0.968	0.97	0.959	0.989	0.961	0.975	1.005
	25			1.031	1.088	1.045		1.115
	50		1.102	1.079	1.161	1.105		1.195
	100	1.146		1.124	1.233	1.163		
	200	1.192	1.201	1.167	1.304	1.22	1.261	1.35
	1000	1.292	1.304	1.258	1.47	1.349	-	1.526
Average quantile	5	0.901	0.902	0.896	0.91	0.891	0.898	0.916
	10		0.972	0.96	0.991	0.961	0.975	1.008
	25	1.044	1.051	1.031	1.09	1.045		1.12
	50			1.08	1.163	1.105	-	1.201
	100	1.143	-	1.125	1.235	1.163		1.281
	200	1.189	1.205	1.167	1.307	1.22	1.259	1.359
	1000	1.287	1.309	1.258	1.473	1.349		1.538
Standard	5	0.019		0.018	0.02	0.018		0.021
deviation	10		0.024	0.022	0.026	0.022	0.024	0.028
	25		0.034	0.028	0.033	0.028		0.04
	50	0.039	0.042	0.033	0.039	0.033		0.049
	100	0.046		0.038	0.045	0.038		0.058
	200	0.054	0.058	0.043	0.051	0.043		0.068
A	1000	0.071	0.077	0.056	0.066	0.056		0.091
Goodness-of-fit	CHISQ	8.722	6.696	7.962	7.962	8.468		
statistics	KS	0.079	0.088	0.072	0.083	0.088		0.123
	SLSC	0.028		0.026	0.035	0.036		
	PPCC1	0.992	0.992	0.994	0.987	0.987	0.985	0.979
	PPCC2	0.99	0.99	0.992	0.987	0.987	0.985	0.979
	LLM	65.28	65.367	64.946	66.066	57.164	59.922	62.308

	Client: OPVV	
RPS Consulting Engineers	Project: ICPSS, Phase 3	
Date: 02/05/08	Probability table	Drawing no.
Init: C.Robinson		CR0071


		Client: OPW	
RPS C	onsulting Engineer	S Project: ICPSS, Phase 3	
	Date: 02/05/08	Probability plot	Drawing no.
	Init: C.Robinson		CR0071

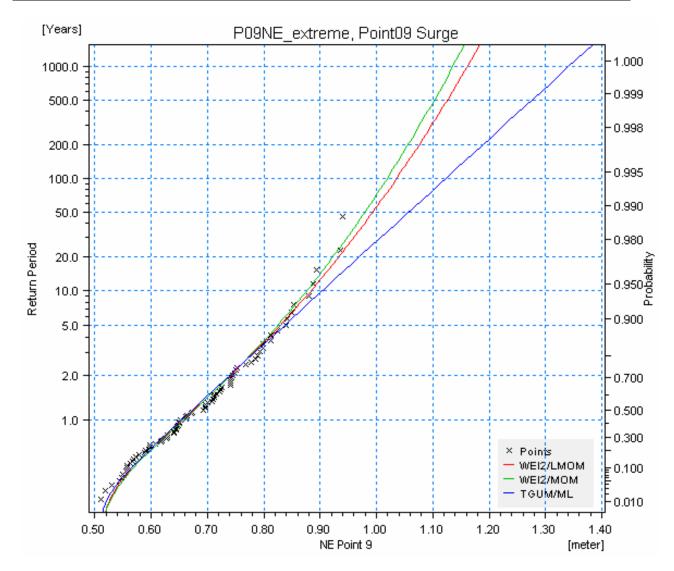
			ICPSS III S	Surge				
			Point 0)7				
					E Combinati	-		
	Return Period [years]	WEI2/LMOM	WEI2/ML	WEI2/MOM	TGUM/ML	GAM/MOM	GAM/LMOM	GAM/ML
Estimated	5	0.846	0.844	0.838	0.85	0.833	0.843	0.853
quantile	10	0.922	0.921	0.908	0.934	0.908	0.927	0.946
	25	1.011	1.01	0.987	1.037	0.997	1.028	1.059
	50		1.071	1.042	1.113	1.062	1.101	1.142
	100	1.132	1.13	1.094	1.188	1.125	1.173	1.224
	200	1.188	1.187	1.143	1.263	1.187	1.244	1.304
	1000	1.313	1.311	1.25	1.435	1.328		
Average quantile	5	0.846	0.846	0.839	0.851	0.834	0.843	0.855
	10		0.923	0.908	0.935	0.908		0.949
	25		1.013		1.039	0.998	-	1.065
	50	1.071	1.076	1.042	1.116	1.062	1.1	1.149
	100	1.129	1.136	1.094	1.191	1.125	1.172	1.232
	200	1.185	1.193		1.266	1.187	1.242	1.314
	1000		1.319	-	1.439	1.328		
Standard	5		0.019		0.021	0.018		
deviation	10		0.025		0.027	0.021	0.023	
	25		0.034	0.026	0.035	0.026		
	50		0.042	0.03	0.041	0.03		0.049
	100		0.05	0.035	0.047	0.035		0.058
	200		0.058		0.054	0.039		
	1000		0.079	0.053	0.069	0.051	0.063	
Goodness-of-fit	CHISQ	8.975	10.241	6.696	8.975	12.266		-
statistics	KS	0.085	0.088		0.084	0.104		0.099
	SLSC	0.042	0.042	0.038	0.041	0.044		0.049
	PPCC1	0.984	0.984	0.987	0.98	0.98		
	PPCC2	0.978	0.978		0.98	0.98		
	LLM	68.352	68.36	67.916	68.454	63.015	65.682	66.683

	Client: OPW	Zero
RPS Consulting Engineers	Project: ICPSS, Phase 3	MIKE
Date: 02/05/08	Probability table	Drawing no.
Init: C.Robinson		CR0071


		Client: OPW	
RPS Consul	ting Engineer	Project: ICPSS, Phase 3	
	Date: 02/05/08	Probability plot	Drawing no.
	nit: C.Robinson		CR0071

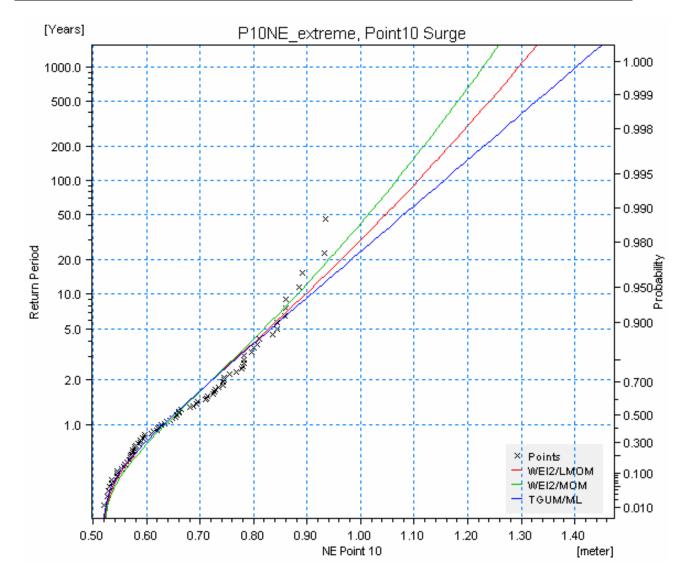
			ICPSS III S	Surge				
			Point 0	8				
					E Combinati	-		
	Return Period [years]	WEI2/LMOM	WEI2/ML	WEI2/MOM	TGUM/ML	GAM/MOM	GAM/LMOM	GAM/ML
Estimated	5	0.846	0.846	0.838	0.85	0.833	0.844	0.853
quantile	10	0.926	0.928	0.91	0.936	0.91	0.93	0.949
	25		1.025	0.994	1.043		1.036	1.069
	50		1.093	1.053	1.121	1.07	1.113	1.156
	100	1.153		1.108				1.242
	200	1.215	-	1.161	1.275		1.263	1.327
	1000	1.353	1.364	1.278	1.454	1.348		1.523
Average quantile	5			0.838		0.833		0.855
	10		0.93	0.911	0.938		0.929	0.952
	25		1.028	0.995				1.073
	50		1.097	1.053		1.07	1.111	1.161
	100	1.15	-	1.108	1.202	1.136	-	1.249
	200	1.211	1.228	1.161	1.279		1.261	1.335
	1000			1.277	1.458			1.534
Standard	5		0.02	0.019	0.022	0.018		0.023
deviation	10		0.026	0.022	0.028		0.024	0.031
	25		0.037	0.026			0.031	0.042
	50		0.046	0.031	0.043	0.031	0.037	0.051
	100			0.036				0.06
	200	0.053	0.065	0.041	0.056			0.07
	1000		0.09	0.055			0.066	0.093
Goodness-of-fit	CHISQ	6.949		6.696				8.215
statistics	KS	0.084	0.087	0.083	0.081	0.096		0.096
	SLSC	0.044	0.045	0.041	0.043			0.051
	PPCC1	0.981	0.981	0.985	0.978			0.97
	PPCC2	0.975	0.975	0.98	0.978			0.97
	LLM	69.754	69.796	69.132	70.169	64.644	67.551	68.584

	Client: OPW	
RPS Consulting	Engineers Project: ICPSS, Phase 3	
Date: O	2/05/08 Probability table	Drawing no.
Init: C	Robinson	CR0071


		Client: OPW	
RPS Cor	nsulting Engineer	S Project: ICPSS, Phase 3	
	Date: 02/05/08	Probability plot	Drawing no.
	Init: C.Robinson]	CR0071

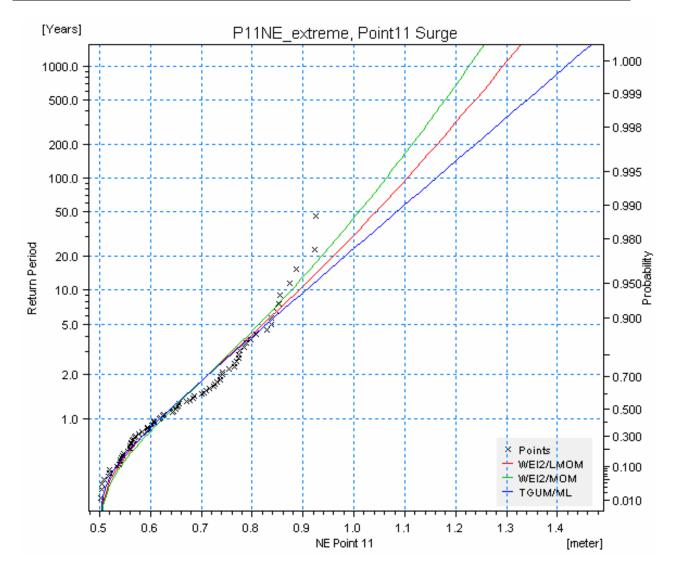
			ICPSS III S	Surge				
			Point 0	9				
					Combinati	-		
	Return Period [years]	WEI2/LMOM	WEI2/ML	WEI2/MOM	TGUM/ML	GAM/MOM	GAM/LMOM	GAM/ML
Estimated	5	0.819	0.817	0.815	0.825	0.81	0.817	0.83
quantile	10	0.88	0.878	0.873	0.899	0.875	0.887	0.911
	25	0.948		0.936	0.99	0.952	0.971	1.009
	50	0.993		0.979	1.057	1.006		1.079
	100	1.036		1.019	1.123	1.059		-
	200	1.075		1.056	1.189	1.111	1.146	
	1000	1.161	1.158	1.135	1.341	1.228	-	
Average quantile	5	0.819		0.816		0.811	0.817	0.835
	10	0.88		0.873	0.901	0.875		0.92
	25	0.947	0.951	0.937	0.992	0.953		1.023
	50	0.992	0.998	0.98	1.059	1.007	1.031	1.097
	100	1.034	1.042	1.02	1.126	1.06		
	200	1.074	1.083	1.057	1.192	1.112	-	
	1000	1.158		1.136	1.344	1.229		-
Standard	5	0.017	0.017	0.017	0.019	0.016		0.02
deviation	10	0.022	0.022	0.02	0.024	0.02	0.022	0.03
	25	0.028		0.025	0.031	0.025		
	50	0.034	0.037	0.03	0.036	0.03		0.054
	100	0.04	0.044	0.034	0.042	0.034		
	200	0.045	0.05	0.039	0.047	0.039		0.075
0 1 ("	1000	0.059		0.049	0.06	0.05		0.101
Goodness-of-fit	CHISQ	3.405		5.43	4.418	8.722	6.19	
statistics	KS SLSC	0.071	0.075	0.067	0.08	0.089		
	PPCC1	0.024	0.024	0.022	0.032	0.034		
		0.995		0.996	0.988	0.989		0.982
	PPCC2	0.993	0.993	0.994	0.988	0.989		0.982
	LLM	68.77	68.782	68.568	69.278	60.679	63.042	65.023

	^{Client:} OPW	Z ero
RPS Consulting Engineers	Project: ICPSS, Phase 3	M IK
Date: 02/05/08	Probability table	Drawing no.
Init: C.Robinson		CR0071


	Client: OPW	
RPS Consulting Enginee	rs Project: ICPSS, Phase 3	
Date: 02/05/08	Probability plot	Drawing no.
Init: C.Robinson		CR0071

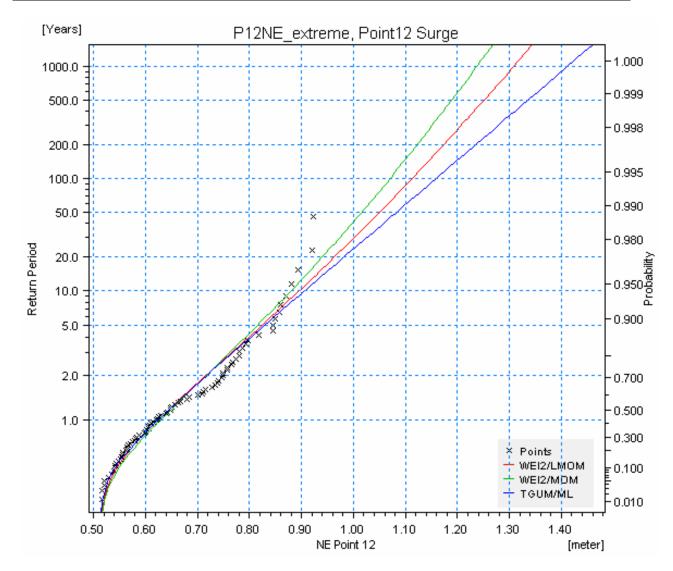
	ICPSS III Surge							
			Point 1	0				
					E Combinati			
	Return Period [years]	WEI2/LMOM	WEI2/ML	WEI2/MOM	TGUM/ML	GAM/MOM	GAM/LMOM	GAM/ML
Estimated	5	0.815	0.814	0.807	0.818	0.802	0.812	0.821
quantile	10	0.892	0.891	0.877	0.902	0.877	0.896	0.913
	25	0.983		0.958		0.966		1.027
	50	1.046		1.013		1.031	1.072	1.11
	100	1.107	1.107	1.066	1.155	1.095	1.144	1.191
	200	1.165	1.166	1.117	1.229	1.157	1.216	1.272
	1000	1.295		1.228	1.401	1.299		1.458
Average quantile	5	0.815		0.808		0.803		0.823
	10	0.892	0.894	0.878		0.877	0.895	0.917
	25	0.981	0.986	0.958		0.967	0.997	1.032
	50	1.044	1.051	1.014	1.083	1.032	-	1.117
	100	1.104	1.113	1.067	1.158	1.095	-	1.2
	200	1.162	1.172	1.117	1.233	1.158		1.282
	1000	1.289		1.227	1.406	1.3	-	1.471
Standard	5	0.019		0.018		0.018		0.022
deviation	10	0.023		0.021	0.027	0.021	0.023	0.03
	25	0.03				0.026		0.041
	50	0.036		0.03	0.041	0.03		0.049
	100	0.044	0.051	0.035		0.035		0.058
	200	0.051	0.06	0.041	0.054	0.04	0.0.0	0.067
	1000	0.07	0.082	0.054	0.069	0.051	0.064	0.089
Goodness-of-fit	CHISQ	5.684	5.937	7.709	8.215	9.987	6.696	7.709
statistics	KS	0.089	0.092	0.087	0.087	0.102	0.1	0.101
	SLSC	0.042	0.043	0.039	0.042	0.045		0.049
	PPCC1	0.983			0.979	0.98		0.972
	PPCC2	0.978		0.982	0.979	0.98		0.972
	LLM	71.08	71.086	70.691	70.916	66.821	69.137	69.804

	Client: OPW	
RPS Consulting Engineers	Project: ICPSS, Phase 3	
Date: 02/05/08	Probability table	Drawing no.
Init: C.Robinson		CR0071


	Client: OPW	
RPS Consulting Eng	ineers Project: ICPSS, Phase 3	
Date: 02/05/0	Probability plot	Drawing no.
Init: C.Robi	nson	CR0071

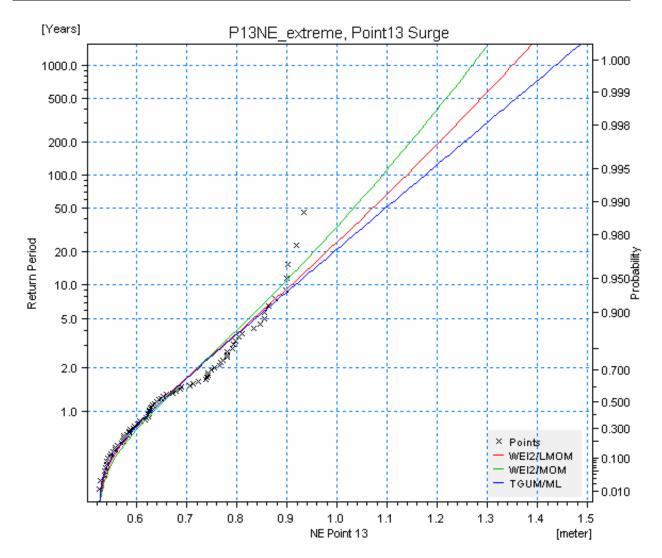
			ICPSS III S	Surge				
			Point 1	1				
					E Combinati	-		
	Return Period [years]	WEI2/LMOM	WEI2/ML	WEI2/MOM	TGUM/ML	GAM/MOM	GAM/LMOM	GAM/ML
Estimated	5	0.808	0.81	0.801	0.814	0.796	0.806	0.822
quantile	10	0.887	0.893	0.872	0.9	0.871	0.891	0.922
	25		0.991	0.953	1.006	0.963	0.995	1.047
	50			1.01	1.084	1.029	1.071	1.138
	100	1.104	1.125	1.063	1.162	1.094	1.145	-
	200	1.163	1.189	1.114		1.157	1.218	
	1000	1.293	1.329	1.225	1.416		1.385	
Average quantile	5			0.801	0.815		0.806	0.824
	10		0.895	0.872	0.902	0.872	0.891	0.926
	25			0.954	1.008	0.964	0.994	1.053
	50	1.041	1.063	1.01	1.087	1.03	1.07	1.145
	100	1.101	1.129	1.063	1.165		1.143	1.237
	200	1.159		1.114		1.158		
	1000	1.286	1.334	1.225	1.421	1.302	1.381	1.536
Standard	5			0.018	0.022	0.018		
deviation	10			0.021	0.027	0.021	0.023	
	25			0.026				
	50		0.049	0.03	0.042	0.03		
	100		0.06	0.035				0.068
	200	0.051	0.072	0.04	0.055		0.048	0.08
	1000		0.099	0.054	0.07	0.051	0.064	0.108
Goodness-of-fit	CHISQ	5.684	6.19	8.975			8.215	
statistics	KS	0.093		0.095		0.109	0.104	0.103
	SLSC	0.045		0.041	0.044	0.047	0.047	0.056
	PPCC1	0.981	0.979	0.985	0.977	0.977	0.973	0.965
	PPCC2	0.975	0.973	0.98	0.977	0.977	0.973	
	LLM	66.933	67.043	66.277	67.651	60.459	63.781	65.446

	Client: OPW	
RPS Consulting Engine	ers Project: ICPSS, Phase 3	
Date: 02/05/08	Probability table	Drawing no.
Init: C.Robinson		CR0071


	Client: OPVV	
RPS Consulting E	ICPSS, Phase 3	
Date: 02/	05/08 Probability plot	Drawing no.
Init: C.F	Robinson	CR0071

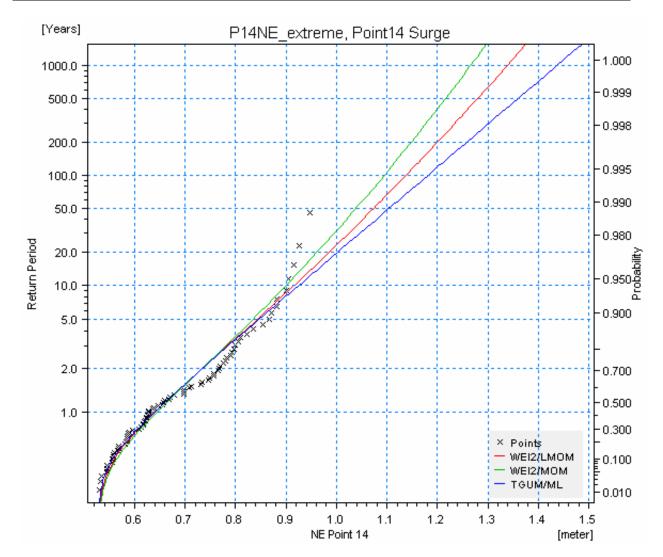
	ICPSS III Surge							
			Point 1	2				
	D/E Combination							
	Return Period [years]	WEI2/LMOM	WEI2/ML	WEI2/MOM	TGUM/ML	GAM/MOM	GAM/LMOM	GAM/ML
Estimated	5	0.811	0.812	0.804	0.815	0.799	0.809	0.821
quantile	10	0.891	0.894	0.875	0.9	0.875	0.894	0.918
	25	0.984	0.99	0.958	1.005	0.966	0.999	1.038
	50	1.05	1.059	1.015		1.033		-
	100	1.113	1.124	1.07	1.159			
	200	1.173	1.187	1.122	1.234	1.162	-	
	1000	1.307	1.328	1.237	1.41	1.307	1.391	1.496
Average quantile	5	0.811	0.814	0.804	0.816			0.823
	10		0.897	0.876		0.875		09 0.823 04 0.922 08 1.044 73 1.134 47 1.223 22 1.311
	25	0.983	0.995	0.958		0.967	0.998	
	50	1.048	1.064	1.016		1.033		-
	100	1.11	1.13	1.07	1.162	1.098		-
	200	1.17	1.194	1.122	1.238	1.162		
	1000	1.301	1.337	1.236	1.415	1.308	1.388	1.513
Standard	5	0.019	0.02	0.019	0.022	0.018		
deviation	10	0.023	0.027	0.021	0.028			
	25	0.03	0.038	0.026	0.036			
	50	0.037	0.048	0.03	0.042	0.03		
	100	0.044	0.058	0.035	0.049			0.066
	200	0.052	0.069	0.04	0.056			0.077
	1000	0.071	0.095	0.054	0.072	0.051	0.064	0.103
Goodness-of-fit	CHISQ	4.418	7.709	6.19	4.418			
statistics	KS	0.093	0.096	0.095	0.09	0.107	0.103	-
	SLSC	0.046	0.047	0.043	0.044	0.047		0.053
	PPCC1	0.98	0.979	0.984	0.977	0.977		
	PPCC2	0.974	0.972	0.977	0.977	0.977	0.973	
	LLM	70.015	70.049	69.499	70.235	65.22	67.874	68.794

	^{Client:} OPW	Zero
RPS Consulting Engineers	Project: ICPSS, Phase 3	MIKE
Date: 02/05/08	Probability table	Drawing no.
Init: C.Robinson		CR0071


DDC		Client: OPW		
RPS Cor	sulting Engineers	Project: ICPSS, Phase 3	P	
	Date: 02/05/08	Probability plot	Drawing no.	
	Init: C.Robinson		CR0071	

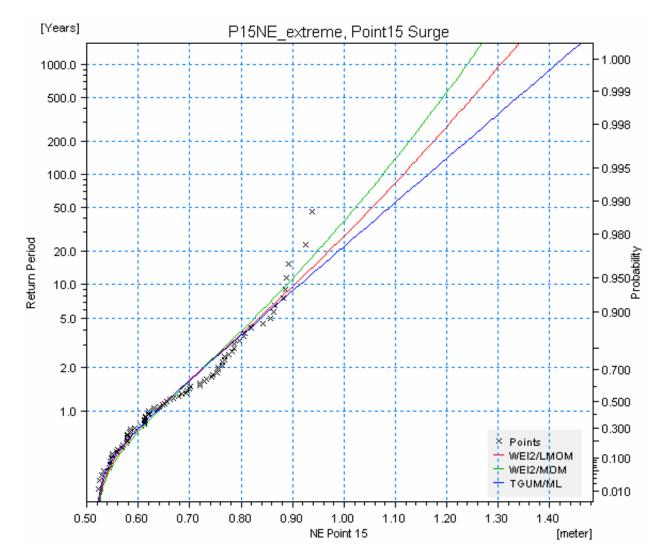
			ICPSS III S	Surge				
			Point 1	3				
	D/E Combination							
	Return Period [years]	WEI2/LMOM	WEI2/ML	WEI2/MOM	TGUM/ML	GAM/MOM	GAM/LMOM	GAM/ML
Estimated	5	0.819	0.82	0.811	0.822	0.807	0.817	0.827
quantile	10	0.902	0.905	0.885	0.91	0.884	0.905	0.924
	25	1.001	1.006	0.972	1.018	0.979	1.013	1.046
	50	1.071	1.079	1.033	1.097	1.048	1.092	1.136
	100	1.138	-	1.091	1.176	1.115		
	200	1.204	1.217	1.146	1.254	1.182	1.246	
	1000	1.349		1.269	1.435	1.333	1.422	
Average quantile	5	0.819		0.812	0.824	0.807	0.817	
	10	0.902	0.91	0.886	0.912	0.885	0.905	6 1.312 2 1.513 7 0.831 5 0.933 2 1.061 1 1.155 8 1.247 5 1.339 2 1.052 2 0.024 4 0.034
	25	1	1.016	0.973	1.02	0.98	1.012	
	50	1.069		1.033	1.1	1.049	1.091	
	100	1.136	-	1.091	1.179	1.116	1.168	
	200	1.201	1.235	1.147	1.258	1.183	1.245	
	1000	1.344	1.393	1.269	1.44	1.334	1.42	
Standard	5	0.02	0.021	0.019	0.022	0.019	0.02	
deviation	10		0.029	0.022	0.029	0.022	0.024	1.224 1.312 1.513 0.831 0.933 1.061 1.155 1.247 1.339 1.552 0.024
	25		0.041	0.027	0.037	0.027	0.032	
	50	0.039		0.031	0.044	0.031	0.038	
	100	0.046		0.036	0.051	0.036	0.044	
	200	0.055		0.041	0.058	0.041	0.051	
	1000	0.076		0.055	0.075	0.052	0.067	0.112
Goodness-of-fit	CHISQ	9.228	-	9.228	9.734	12.772	10.494	11
statistics	KS	0.103		0.105	0.1	0.116	0.111	0.108
	SLSC		0.045	0.048	0.048	0.053		
	PPCC1	0.978		0.982	0.975	0.976	0.972	0.967
	PPCC2	0.971	0.97	0.975	0.975	0.976		0.967
	LLM	71.145	71.182	70.551	71.411	66.898	69.493	70.266

		Client: OPW	
RPS Co	nsulting Engineer	S Project: ICPSS, Phase 3	
	Date: 02/05/08	Probability table	Drawing no.
	Init: C.Robinson		CR0071


	-	Client: OPW	
PS Consult	ting Engineer	S Project: ICPSS, Phase 3	
C	Date: 02/05/08	Probability plot	Drawing no.
Ir	nit: C.Robinson		CR0071

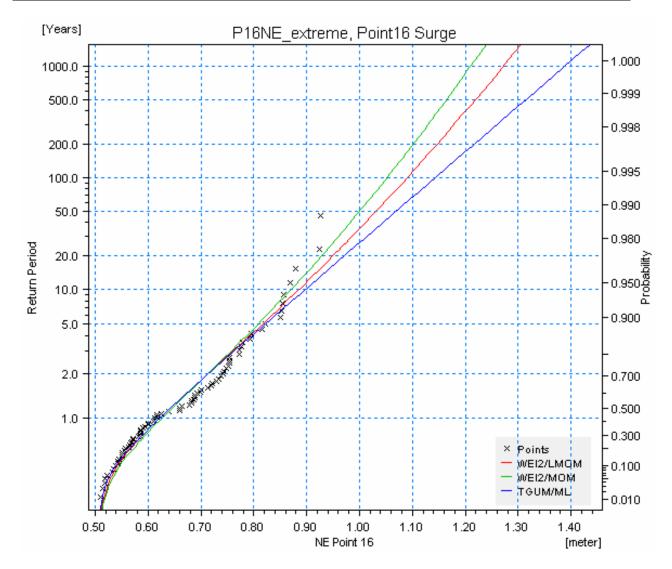
			ICPSS III S	Surge				
			Point 1	4				
					Combinati	-		
	Return Period [years]	WEI2/LMOM	WEI2/ML	WEI2/MOM	TGUM/ML	GAM/MOM	GAM/LMOM	GAM/ML
Estimated	5	0.83	0.831	0.822	0.833	0.817	0.828	0.84
quantile	10	0.911	0.915	0.895	0.919	0.894	0.914	0.938
	25	1.006	1.014	0.98	1.026	0.988		1.061
	50	1.073	1.084	1.038	1.104	1.056		1.151
	100	1.138	-	1.094	1.181	1.122	1.173	
	200	1.2	1.217	1.148	1.258	1.187	1.248	
	1000	1.338	1.363	1.265	1.436	1.335		1.53
Average quantile	5		0.833	0.823	0.834	0.818		0.843
	10		0.918	0.896	0.921	0.895		0.945
	25		1.02	0.98	1.028	0.988		1.071
	50	1.072	1.092	1.039	1.107	1.056		_
	100	1.135	1.161	1.095	1.184	1.122	1.172	1.256
	200	1.196	1.228	1.148	1.262	1.187	1.246	1.347
	1000	1.332	1.377	1.265	1.441	1.336		1.556
Standard	5		0.021	0.019	0.022	0.019		0.024
deviation	10		0.028	0.022	0.028	0.022	0.024	0.034
	25		0.041	0.026	0.037	0.027	0.031	0.048
	50		0.051	0.031	0.044	0.031	0.037	0.06
	100	0.045		0.036	0.051	0.035		
	200	0.053	0.074	0.041	0.057	0.04		0.084
0 1 ("	1000	0.073		0.054	0.074	0.052	0.065	_
Goodness-of-fit	CHISQ	11.253	9.734	12.013	8.722	16.823		
statistics	KS	0.094	0.097	0.096	0.091	0.108		-
	SLSC	0.046	0.048	0.044	0.044	0.047	0.047	0.053
	PPCC1	0.98	0.978	0.984	0.976	0.977	0.973	0.967
	PPCC2	0.973	0.972	0.977	0.976	0.977	0.973	
	LLM	69.331	69.376	68.782	69.681	64.52	67.205	68.178

RPS Consulting Engineers		Client: OPW	
		S Project: ICPSS, Phase 3	
	Date: 02/05/08	Probability table	Drawing no.
	Init: C.Robinson		CR0071


		Client: OPW	
RPS C	onsulting Engineer	S Project: ICPSS, Phase 3	
	Date: 02/05/08	Probability plot	Drawing no.
	Init: C.Robinson		CR0071

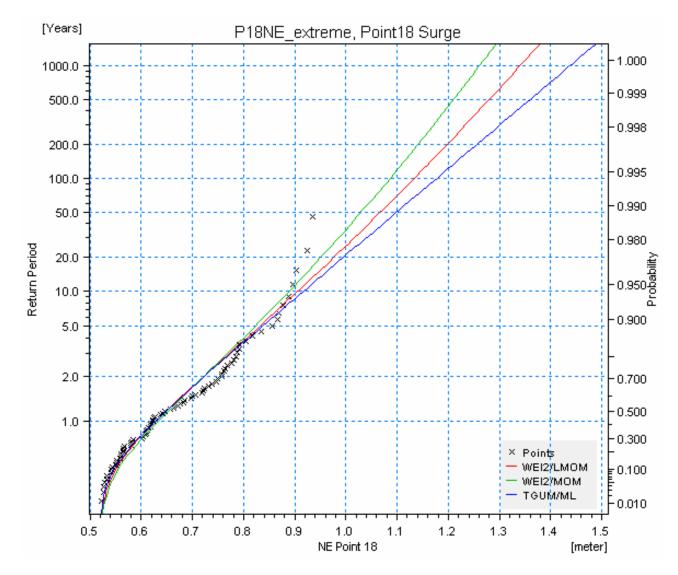
	ICPSS III Surge							
			Point 1	5				
		D/E Combination						
	Return Period [years]	WEI2/LMOM	WEI2/ML	WEI2/MOM	TGUM/ML	GAM/MOM	GAM/LMOM	GAM/ML
Estimated	5	0.83	0.831	0.822	0.833	0.817	0.828	0.84
quantile	10	0.911	0.915	0.895	0.919	0.894	0.914	0.938
	25	1.006	1.014	0.98	1.026	0.988		1.061
	50	1.073	1.084	1.038	1.104	1.056		-
	100	1.138	1.152	1.094	1.181	1.122	1.173	
	200	1.2	1.217	1.148		1.187	1.248	
	1000	1.338	1.363	1.265	1.436	1.335		1.53
Average quantile	5	0.83	0.833	0.823	0.834	0.818		
	10	0.91	0.918	0.896	0.921	0.895		0.945
	25	1.005	1.02	0.98	1.028	0.988		1.071
	50	1.072	1.092	1.039	1.107	1.056		
	100	1.135	1.161	1.095	1.184	1.122	1.172	1.256
	200	1.196	1.228	1.148	1.262	1.187	1.246	-
	1000	1.332	1.377	1.265		1.336		1.556
Standard	5	0.02	0.021	0.019	0.022	0.019		0.024
deviation	10	0.024	0.028	0.022	0.028	0.022	0.024	0.034
	25	0.031	0.041	0.026		0.027	0.031	0.048
	50	0.038	0.051	0.031	0.044	0.031	0.037	0.06
	100	0.045	0.062	0.036		0.035		
	200	0.053	0.074	0.041	0.057	0.04	0.05	
	1000	0.073	0.103	0.054	0.074	0.052	0.065	0.114
Goodness-of-fit	CHISQ	11.253	9.734	12.013	-	16.823		
statistics	KS	0.094	0.097	0.096	0.091	0.108	0.103	-
	SLSC	0.046	0.048	0.044	0.044	0.047	0.047	0.053
	PPCC1	0.98	0.978	0.984	0.976	0.977	0.973	
	PPCC2	0.973	0.972	0.977	0.976	0.977	0.973	
	LLM	69.331	69.376	68.782	69.681	64.52	67.205	68.178

	Client: OPW	
RPS Consulting Engine	eers Project: ICPSS, Phase 3	
Date: 02/05/08	Probability table	Drawing no.
Init: C.Robinso	un l	CR0071


		Client: OPW	
RPS CO	onsulting Engineer	S Project: ICPSS, Phase 3	
	Date: 02/05/08	Probability plot	Drawing no.
	Init: C.Robinson		CR0071

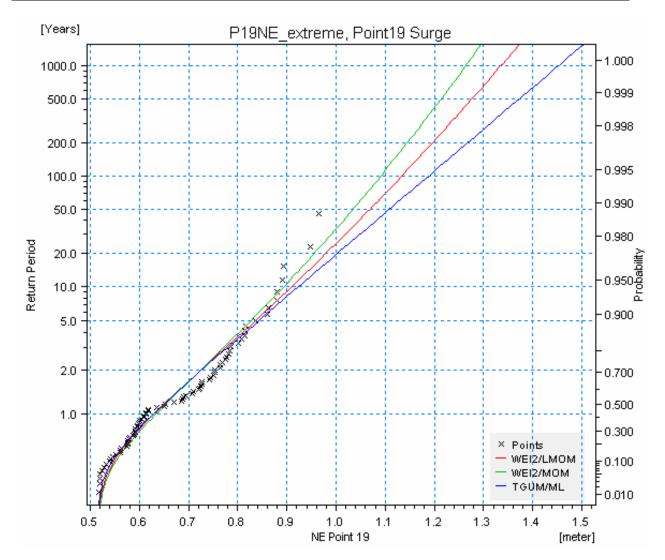
	ICPSS III Surge							
			Point 1	6				
		D/E Combination						
	Return Period [years]	WEI2/LMOM	WEI2/ML	WEI2/MOM	TGUM/ML	GAM/MOM	GAM/LMOM	GAM/ML
Estimated	5	0.805	0.805	0.798	0.809	0.793	0.802	0.813
quantile	10	0.88	0.882	0.866	0.892	0.866	0.884	0.906
	25	0.969	0.972	0.945		0.955		1.021
	50	1.031	1.036	1	1.069	1.019		1.104
	100	1.09		1.052	1.143	1.081	1.128	-
	200	1.146	1.154	1.101	1.217	1.143		1.268
	1000	1.271	1.283	1.209	1.387	1.282	1.359	1.455
Average quantile	5	0.805	0.806	0.798	0.81	0.793		0.816
	10	0.88	0.885	0.867	0.893	0.866		0.911
	25	0.968	0.977	0.946	0.996	0.955		1.029
	50	1.029	1.042	1.001	1.071	1.019		1.115
	100	1.087	1.104	1.052	1.146	1.082	1.127	1.2
	200	1.143	1.163	1.101	1.22	1.143	-	1.283
	1000	1.265	1.295	1.209	1.391	1.283		1.476
Standard	5	0.019		0.018	0.021	0.018		0.022
deviation	10	0.023	0.025	0.021	0.026	0.021	0.023	0.03
	25	0.03	0.036	0.026	0.034	0.026		0.042
	50	0.037	0.044	0.031	0.04	0.03		0.052
	100	0.044	0.054	0.036		0.035		0.062
	200	0.051	0.063	0.041	0.053	0.04	0.048	0.072
	1000	0.07	0.087	0.054	0.067	0.052	0.064	0.096
Goodness-of-fit	CHISQ	9.228	7.709	11.506		14.797	8.722	7.456
statistics	KS	0.101	0.106	0.095	0.099	0.109	-	0.12
	SLSC	0.042	0.043	0.038	0.042	0.045		0.051
	PPCC1	0.983	0.982	0.986		0.979		0.97
	PPCC2	0.978	0.977	0.982	0.979	0.979		0.97
	LLM	70.814	70.837	70.394	70.793	66.011	68.488	69.399

	Client: OPW	Qero Qero
RPS Consulting Engineers	Project: ICPSS, Phase 3	MIK
Date: 02/05/08	Probability table	Drawing no.
Init: C.Robinson		CR0071


	Client: OPW		
RPS Consulting Engine	ers Project: ICPSS, Phase 3		
Date: 02/05/08	Probability plot	Drawing no.	
Init: C.Robinson	1	CR0071	

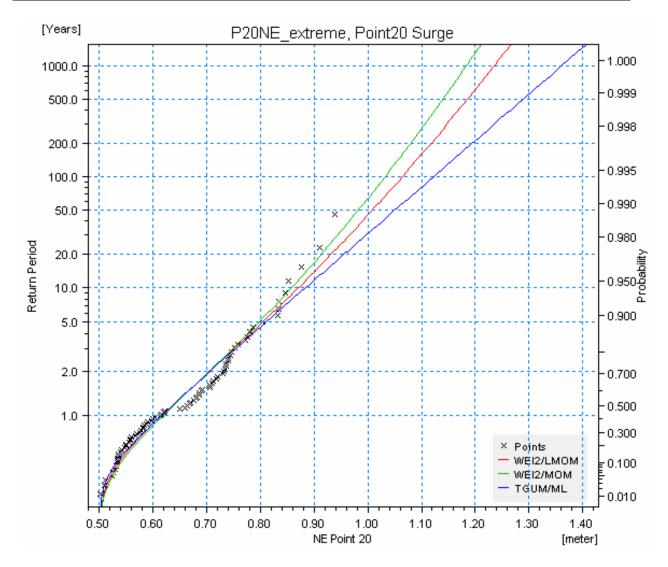
	ICPSS III Surge							
			Point 1	8				
		D/E Combination						
	Return Period [years]	WEI2/LMOM	WEI2/ML	WEI2/MOM	TGUM/ML	GAM/MOM	GAM/LMOM	GAM/ML
Estimated	5	0.819	0.82	0.811	0.823	0.806		
quantile	10	0.901	0.906	0.884	0.91	0.883	0.904	0.929
	25	0.998	1.009	0.969	1.019		1.011	1.053
	50	1.067	1.082	1.029	1.098	1.045	1.089	1.145
	100	1.133	1.152	1.086	1.177	1.112	1.166	1.235
	200	1.197	1.221	1.14	1.255	1.178	1.242	1.325
	1000	1.34	1.374	1.26	1.437	1.327	1.417	1.531
Average quantile	5	0.819		0.811	0.824	0.806		
	10	0.9	0.909	0.885	0.912	0.884	0.903	0.933
	25	0.997	1.013	0.97	1.021	0.978	-	1.06
	50	1.065	1.087	1.03	1.101	1.046	1.088	1.153
	100	1.13		1.086	1.18			-
	200	1.193	-	1.14	1.259	1.178		1.337
	1000	1.333		1.26		1.328		1.548
Standard	5	0.02	0.021	0.019	0.022	0.019		0.023
deviation	10	0.024	0.028	0.022	0.028	0.022	0.024	0.032
	25	0.032	0.04	0.027	0.036		0.032	0.045
	50	0.039	0.051	0.032	0.043	0.032	0.038	
	100	0.047	0.062	0.037	0.05	0.036		0.065
	200	0.056	0.074	0.042	0.057	0.041	0.051	0.076
	1000	0.078	0.103	0.057	0.074	0.054	0.068	0.102
Goodness-of-fit	CHISQ	8.215		12.013	8.215		7.203	
statistics	KS	0.089	0.093	0.091	0.085	0.111	0.098	0.098
	SLSC	0.045	0.047	0.042	0.044	0.046		
	PPCC1	0.98	0.978	0.985		0.978		0.967
	PPCC2	0.975	0.972	0.979	0.977	0.978		0.967
	LLM	70.113	70.182	69.441	70.542	65.16	68.101	69.15

	Client: OPW	
RPS Consulting Engineers	Project: ICPSS, Phase 3	
Date: 02/05/08	Probability table	Drawing no.
Init: C.Robinson		CR0071


	Client: OPW		
RPS Consulting Enginee	Project: ICPSS, Phase 3		
Date: 02/05/08	Probability plot	Drawing no.	
Init: C.Robinson		CR0071	

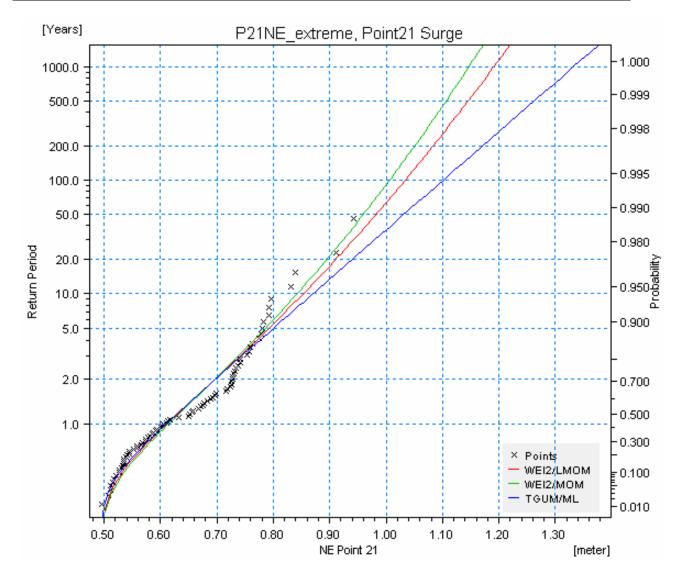
			ICPSS III S	Surge				
			Point 1	9				
		D/E Combination						
	Return Period [years]	WEI2/LMOM	WEI2/ML	WEI2/MOM	TGUM/ML	GAM/MOM	GAM/LMOM	GAM/ML
Estimated	5	0.822	0.828	0.815	0.828	0.81	0.82	0.84
quantile	10	0.904	0.919	0.888	0.917	0.888	0.908	0.948
	25	1	1.028	0.974	1.027	0.983	1.015	1.083
	50	1.068	1.106	1.034	1.108		1.093	
	100	1.133	1.182	1.09	1.188	1.118	1.17	1.281
	200	1.196		1.144	1.267	1.185		
	1000	1.335	1.42	1.263	1.451	1.335	1.42	1.605
Average quantile	5	0.822	0.829	0.815	0.829	0.81	0.82	0.842
	10	0.904	0.921	0.889	0.919	0.888	0.907	0.951
	25	0.999	1.031	0.975	1.03	0.983	1.014	1.088
	50	1.066	1.109	1.034	1.111	1.052	1.092	1.189
	100	1.13	1.184	1.09	1.191	1.119	1.168	1.289
	200	1.191	1.258	1.144	1.271	1.185	1.243	1.389
	1000	1.327	1.421	1.262	1.456			-
Standard	5		0.021	0.019	0.022	0.019	0.02	0.024
deviation	10		0.03	0.022	0.028	0.022	0.024	0.034
	25		0.045		0.036			0.049
	50	0.039	0.059	0.033	0.043	0.032	0.038	0.062
	100	0.048	0.073	0.038	0.05	0.037	0.045	0.074
	200	0.056		0.044	0.057	0.043		0.087
	1000	0.078	0.124	0.059	0.074	0.056	0.069	0.119
Goodness-of-fit	CHISQ	19.861	15.557	17.329	18.595	15.304	17.835	13.785
statistics	KS	0.11	0.116	0.109	0.106		-	0.12
	SLSC	0.043	0.05	0.039	0.044	0.047	0.046	0.058
	PPCC1	0.98	0.975	0.984	0.977	0.978	0.974	0.963
	PPCC2	0.977	0.971	0.981	0.977	0.978		
	LLM	66.428	66.784	65.467	67.95	59.005	62.989	65.586

DDC Consulting Fracing		Client: OPW		
RPS Const	ulting Engineers	Project: ICPSS, Phase 3	MIKE	
	Date: 02/05/08	Probability table	Drawing no.	
	Init: C.Robinson		CR0071	


		Client: OPW		
RPS C	onsulting Engineer	S Project: ICPSS, Phase 3		
	Date: 02/05/08	Probability plot	Drawing no.	
	Init: C.Robinson		CR0071	

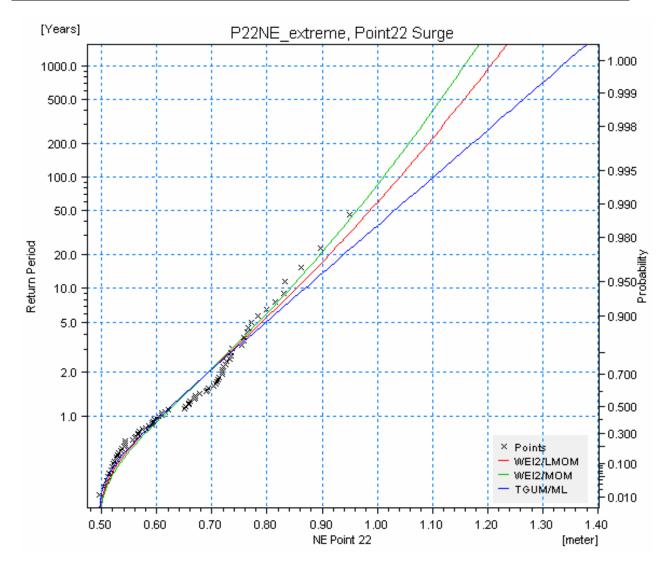
	ICPSS III Surge							
			Point 2	0				
		D/E Combination						
	Return Period [years]	WEI2/LMOM	WEI2/ML	WEI2/MOM	TGUM/ML	GAM/MOM	GAM/LMOM	GAM/ML
Estimated	5	0.793	0.792	0.787	0.798	0.782	0.791	0.799
quantile	10	0.866	0.864	0.853	0.878	0.853	0.87	0.886
	25	0.95	0.947	0.93				0.992
	50	1.008	1.005	0.983	1.05		1.036	1.07
	100	1.064	1.06	1.032	1.122	1.062	1.105	
	200	1.117	1.113	1.08		1.122	1.172	1.221
	1000	1.235	1.229	1.183	1.36	1.258		1.393
Average quantile	5	0.793	0.793	0.787	0.799	0.782		0.801
	10	0.865	0.866	0.854	0.88		0.87	0.889
	25	0.949	0.951	0.93		0.94		0.997
	50	1.007	1.01	0.983				
	100	1.061	1.066	1.033	-	1.063		1.154
	200	1.114	1.12	1.08	-	1.123		1.231
	1000	1.229	1.237	1.182	1.364	1.258		1.406
Standard	5	0.018		0.018		0.018		
deviation	10	0.022	0.024	0.021	0.026	0.021	0.023	0.028
	25	0.03	0.032	0.027	0.033	0.027	0.03	0.038
	50	0.037	0.039	0.032	0.039	0.031	0.036	0.046
	100	0.044	0.047	0.037	0.044	0.036		0.054
	200	0.051	0.055	0.042	0.05	0.041	0.048	0.062
	1000	0.07	0.073	0.056		0.054		0.081
Goodness-of-fit	CHISQ	14.291	14.291	12.772	15.557	17.329		
statistics	KS	0.107	0.108	0.101	0.106		-	0.126
	SLSC	0.037	0.036	0.033	0.04	0.043		0.046
	PPCC1	0.985	0.985	0.987	0.981	0.981	0.978	0.975
	PPCC2	0.983	0.984	0.987	0.981	0.981	0.978	0.975
	LLM	71.648	71.644	71.325	71.389	67.02	69.214	70.033

	Client: OPW	Z ero
RPS Consulting Engineers	Project: ICPSS, Phase 3	Z Z
Date: 02/05/08	Probability table	Drawing no.
Init: C.Robinson		CR0071


RPS Consulting Engineers		Client: OPW		
		S Project: ICPSS, Phase 3	R	
D	ate: 02/05/08	Probability plot	Drawing no.	
In	it: C.Robinson		CR0071	

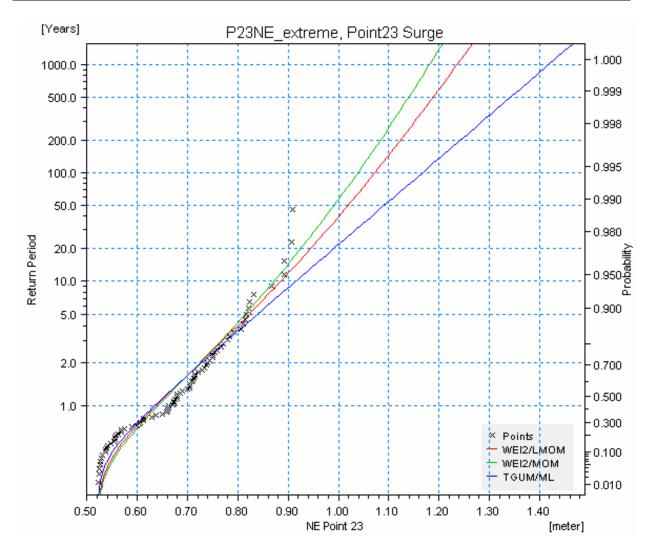
	ICPSS III Surge							
			Point 2	:1				
	D/E Combination							
	Return Period [years]	WEI2/LMOM	WEI2/ML	WEI2/MOM	TGUM/ML	GAM/MOM	GAM/LMOM	GAM/ML
Estimated	5	0.781	0.779	0.775	0.787	0.77	0.779	0.787
quantile	10	0.849	0.847	0.838	0.865			0.87
	25	0.928	0.926	0.91	0.961	0.92		
	50	0.982	0.98	0.96			-	1.046
	100	1.034	1.031	1.006	-			-
	200	1.083	1.08	1.05				-
	1000	1.19	-	1.146		1.221	-	
Average quantile	5	0.781	0.781	0.776			0.779	
	10	0.849	0.85	0.839		0.839		
	25	0.927	0.93	0.911	0.963		0.944	0.977
	50	0.98	0.985	0.96			-	1.052
	100	1.031	1.037	1.006				1.126
	200	1.08	1.086	1.05	-		-	1.199
	1000	1.185	1.195	1.145			-	1.366
Standard	5	0.017	0.018	0.017	0.019		0.017	0.02
deviation	10	0.021	0.022	0.02	0.024			0.026
	25	0.028	0.03	0.026				0.034
	50	0.034	0.037	0.031	0.036		0.033	
	100	0.041	0.044	0.036		0.036		
	200	0.048	0.051	0.042	0.046			
	1000	0.065	0.068	0.055				
Goodness-of-fit	CHISQ	14.291	14.797	17.835		30.241		
statistics	KS	0.116	0.118	0.119	-			-
	SLSC	0.042	0.042	0.039	0.045			
	PPCC1	0.98	0.98	0.983	0.976			
	PPCC2	0.978	0.978	0.981	0.976			
	LLM	73.436	73.434	73.107	73.127	68.133	70.464	71.532

	. Client: OPW	
RPS Consulting Eng	ineers Project: ICPSS, Phase 3	
Date: 02/05/1	Probability table	Drawing no.
Init: C.Rob	nson	CR0071


	Client: OPVV	
RPS Consulting Enginee	rs Project: ICPSS, Phase 3	R
Date: 02/05/08	Probability plot	Drawing no.
Init: C.Robinson		CR0071

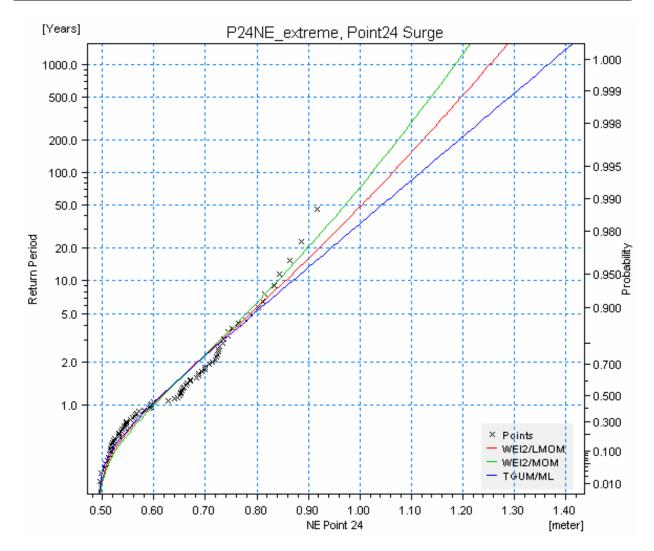
	ICPSS III Surge							
			Point 2					
		D/E Combination						
	Return Period [years]	WEI2/LMOM	WEI2/ML	WEI2/MOM	TGUM/ML	GAM/MOM	GAM/LMOM	GAM/ML
Estimated	5	0.779	0.778	0.773	0.785	0.768	0.777	0.786
quantile	10	0.849	0.849	0.838	0.863	0.838	0.853	0.871
	25		0.93	0.912	0.96	0.921	0.947	0.976
	50		0.987	0.963	1.031	0.982	1.014	1.052
	100	-	1.041	1.011	1.102	1.041	1.08	1.127
	200	1.092	1.093	1.057	1.172	1.098	-	1.201
	1000	1.205	1.206	1.157	1.334	1.23	-	1.37
Average quantile	5		0.78	0.774	0.786	0.769	0.777	0.788
	10		0.852	0.839	0.865	0.838	0.853	0.875
	25		0.935	0.913	0.962	0.922	0.946	0.983
	50			0.964	1.034	0.983		1.061
	100	1.038	1.049	1.012	1.104	1.042	1.079	1.138
	200	1.088		1.057	1.175	1.099	1.144	1.214
	1000	1.199	1.218	1.157	1.337	1.231	1.291	1.388
Standard	5			0.018	0.02	0.017	0.018	0.02
deviation	10		0.024	0.021	0.025	0.021	0.022	0.027
	25		0.032	0.028	0.032	0.027	0.03	0.037
	50		0.04	0.033	0.037	0.032	0.036	0.045
	100		0.048	0.039	0.043	0.038		0.053
	200	0.052	0.056	0.044	0.048	0.043		0.061
	1000		0.076	0.059	0.062	0.056		0.08
Goodness-of-fit	CHISQ	15.304	15.304	16.063	17.582	20.873		15.81
statistics	KS	0.109	0.112	0.109	0.109	0.124	0.123	0.131
	SLSC	0.035		0.032	0.04	0.043		0.047
	PPCC1	0.985	0.985	0.987	0.982	0.982	0.979	0.975
	PPCC2	0.985	0.984	0.988	0.982	0.982	0.979	0.975
	LLM	73.856	73.867	73.554	73.475	69.321	71.429	72.298

	Client: OPW	
RPS Consulting	Engineers Project: ICPSS, Phase 3	
Date: O	2/05/08 Probability table	Drawing no.
Init: C	Robinson	CR0071


	Client: OPW	
RPS Consulting Engin	eers Project: ICPSS, Phase 3	
Date: 02/05/08	Probability plot	Drawing no.
Init: C.Robins	on	CR0071

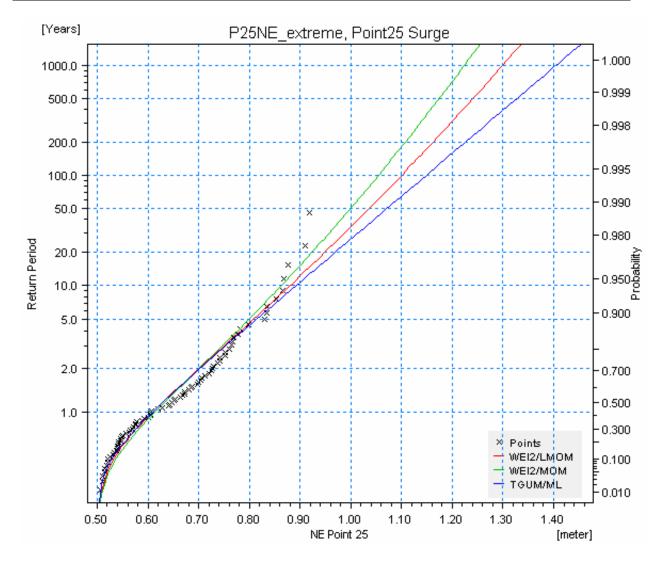
	ICPSS III Surge							
			Point 2	3				
					<u>Combinati</u>	-		
	Return Period [years]	WEI2/LMOM	WEI2/ML	WEI2/MOM	TGUM/ML	GAM/MOM	GAM/LMOM	GAM/ML
Estimated	5	0.811	0.822	0.804	0.825	0.799	0.808	0.838
quantile	10	0.881	0.908	0.868	0.909	0.868		
	25	0.962	1.011	0.941	1.014	0.951	0.979	1.08
	50	1.019		0.991	1.091	1.011	1.047	1.179
	100	1.072	1.155	1.038	1.166			-
	200	1.123	1.223	1.083	1.242	1.126	-	-
	1000	1.235	1.376	1.181	1.417	1.256		
Average quantile	5	0.811	0.824	0.804	0.826			
	10		0.911	0.868	0.911	0.868		
	25	0.961	1.015	0.941	1.016		0.978	
	50	1.016		0.991	1.093		1.046	
	100	1.068	1.16	1.038	1.169	-	1.111	1.288
	200	1.118	-	1.083	1.245		1.176	
	1000	1.227	1.381	1.179	1.42	1.256		1.617
Standard	5	0.016		0.016	0.018			
deviation	10	0.02	0.027	0.018		0.018		0.028
	25	0.029	0.044	0.024	0.029	0.024		
	50	0.037	0.059	0.029	0.034	0.028		0.053
	100	0.045		0.034	0.04			0.065
	200	0.054	0.091	0.04	0.045	0.038		0.077
	1000	0.076		0.054	0.059	0.05		0.106
Goodness-of-fit	CHISQ	23.911	20.873	26.443	18.595			23.911
statistics	KS	0.137	0.172	0.125	0.143	-	0.15	
	SLSC	0.046		0.04	0.055			
	PPCC1	0.975	0.963	0.979	0.967	0.97	0.965	
	PPCC2	0.975		0.98	0.967	0.97	0.965	
	LLM	67.83	69.012	66.477	71.028	54.561	60.66	67.415

	Client: OPW	K ero
RPS Consulting Engineer	S Project: ICPSS, Phase 3	MIKE
Date: 02/05/08	Probability table	Drawing no.
Init: C.Robinson		CR0071


	Client: OPVV	
RPS Consulting Enginee	Project: ICPSS, Phase 3	P
Date: 02/05/08	Probability plot	Drawing no.
Init: C.Robinson		CR0071

			ICPSS III S	Surge				
			Point 2					
		D/E Combination						
	Return Period [years]	WEI2/LMOM	WEI2/ML	WEI2/MOM	TGUM/ML	GAM/MOM	GAM/LMOM	GAM/ML
Estimated	5	0.775	0.776	0.768	0.781	0.763	0.773	0.783
quantile	10	0.851	0.854	0.836		0.835	0.854	0.875
	25	0.94	0.948	0.916		0.923	0.954	0.99
	50	1.003	1.014	0.971	1.043	0.987	1.026	1.074
	100	1.064	1.077	1.024	1.118	1.049	1.097	1.156
	200	1.122	1.139	1.074	-	1.111	1.168	
	1000	1.252	1.275	1.185	1.364	1.25	1.329	1.426
Average quantile	5			0.768		0.763	0.773	
	10	0.85	0.859	0.837	0.866	0.836	0.854	0.881
	25	0.939	0.955	0.916		0.924	0.953	
	50	1.001	1.023	0.972		0.988	1.025	
	100	1.061	1.088	1.024	1.12	1.05	1.096	1.172
	200	1.118	-	1.074		1.111	1.166	-
	1000	1.245		1.184		1.251	1.326	
Standard	5			0.018		0.017	0.018	0.022
deviation	10	0.022	0.025	0.021	0.025	0.021	0.023	
	25	0.03	0.036	0.026		0.026	0.03	
	50	0.038	0.045	0.031	0.038	0.031	0.036	0.05
	100	0.046		0.037	0.044	0.036	0.043	0.06
	200	0.055	0.066	0.043	0.05	0.041	0.05	0.07
	1000	0.076		0.058		0.054	0.066	
Goodness-of-fit	CHISQ	16.823		20.114	14.291	22.139	18.595	
statistics	KS	0.129	0.135	0.121	0.127	0.133	0.14	0.148
	SLSC	0.04	0.043	0.036		0.046	0.045	
	PPCC1	0.981	0.98	0.985		0.979	0.975	
	PPCC2	0.98	0.978	0.985		0.979	0.975	
	LLM	74.286	74.326	73.763	74.215	69.831	72.373	73.241

	Client: OPVV	ero
RPS Consulting Engineers	Project: ICPSS, Phase 3	MIK
Date: 02/05/08	Probability table	Drawing no.
Init: C.Robinson		CR0071


RPS Consulting Engineers		Client: OPW	
		Project: ICPSS, Phase 3	
Date:	02/05/08	Probability plot	Drawing no.
Init :	C.Robinson		CR0071

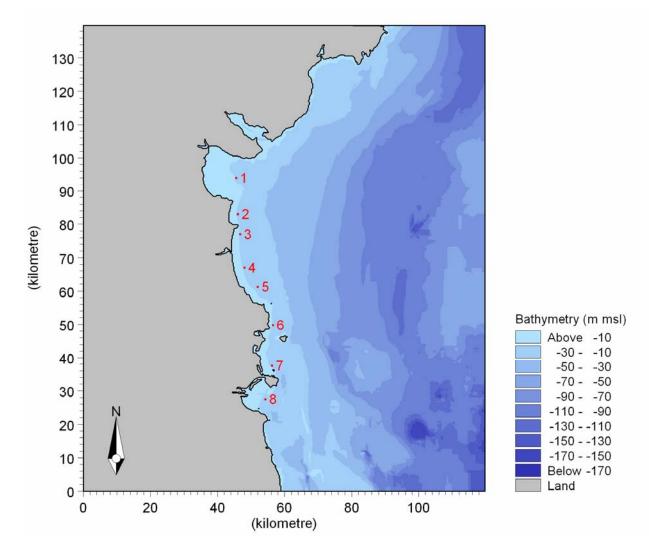
	ICPSS III Surge							
	Point 25							
		D/E Combination						
	Return Period [years]	WEI2/LMOM	WEI2/ML	WEI2/MOM	TGUM/ML	GAM/MOM	GAM/LMOM	GAM/ML
Estimated	5	0.795	0.796	0.787	0.8	0.783	0.793	0.803
quantile	10	0.875	0.878	0.859	0.886	0.858	0.878	0.899
	25	0.969	0.975	0.942	0.993	0.949	0.982	1.018
	50	1.036	1.044	0.999	1.071	1.016		1.105
	100	1.1	1.11	1.054	1.148	1.08		1.191
	200	1.161	1.175	1.107	1.225	1.144		1.276
	1000	1.298	1.318	1.223	1.403	1.29		
Average quantile	5	0.795	0.798	0.788	0.802	0.783		
	10	0.875	0.881	0.859	0.888	0.858		0.903
	25	0.968	0.98	0.942	0.995	0.95		1.024
	50	1.034	1.05	1	1.074	1.016		1.112
	100	1.096	1.117	1.054	1.151	1.081	1.131	1.2
	200	1.157	1.182	1.107	1.228	1.145		1.287
-	1000	1.291	1.328	1.222	1.407	1.29	-	1.487
Standard	5		0.02	0.019	0.021	0.018		0.022
deviation	10		0.026	0.021	0.027	0.022		
	25	0.031	0.037	0.027	0.034	0.027	0.031	0.041
	50	0.039	0.046	0.032	0.041	0.031	0.037	0.05
	100	0.047	0.056	0.037	0.047	0.036		0.059
	200	0.056	0.066	0.043	0.054	0.041	0.051	0.068
	1000	0.077	0.092	0.057	0.069	0.054		
Goodness-of-fit	CHISQ	8.215	7.962	9.481	6.443	15.051	9.228	8.215
statistics	KS	0.084	0.088	0.097	0.08	0.117	0.093	
	SLSC	0.042	0.044	0.038	0.043	0.045		
	PPCC1	0.982	0.98	0.986	0.979	0.98		
	PPCC2	0.978		0.982	0.979	0.98		
	LLM	71.696	71.736	71.105	71.827	67.038	69.788	70.671

RPS Consulting Engineers		Client: OPW	K Dero
RPS Consu	Iting Engineers	Project: ICPSS, Phase 3	MIKE
	Date: 02/05/08	Probability table	Drawing no.
	Init: C.Robinson		CR0071


		Client: OPW	
RPS Consulting Engineers		S Project: ICPSS, Phase 3	
	Date: 02/05/08	Probability plot	Drawing no.
	Init: C.Robinson		CR0071

	ICPSS III Surge							
			Point 2	6				
		D/E Combination						
	Return Period [years]	WEI2/LMOM	WEI2/ML	WEI2/MOM	TGUM/ML	GAM/MOM	GAM/LMOM	GAM/ML
Estimated	5	0.864	0.869	0.856	0.874	0.851	0.862	0.883
quantile	10	0.941	0.955	0.925	0.962	0.925	0.945	0.988
	25	1.031	1.057	1.005	1.071	1.015	1.048	1.119
	50	1.094	1.129	1.059	1.151	1.079		1.215
	100	1.153		1.111	1.23	1.142	1.194	-
	200	1.211	1.264	1.16		1.204		
	1000	1.337	1.413	1.267	1.491	1.345		1.621
Average quantile	5		0.871	0.856		0.851	0.862	0.885
	10		0.958	0.926		0.925		0.992
	25			1.005	1.074	1.015		1.125
	50		1.133	1.059	-	1.079		
	100	1.15		1.111	1.233	1.142	1.192	1.32
	200	1.206		1.16		1.204		
	1000	1.329		1.266		1.345		
Standard	5		0.019	0.017	0.02	0.017	0.017	0.022
deviation	10		0.026	0.02	0.025	0.02		0.03
	25			0.024	0.032	0.025		
	50	0.036		0.029	0.038	0.029		0.053
	100		0.064	0.034	0.044	0.033		0.063
	200	0.053		0.04	0.05	0.038		0.074
	1000	0.074	0.11	0.054	0.065	0.051	0.064	
Goodness-of-fit	CHISQ	21.886		19.608		22.646		
statistics	KS	0.112	0.122	0.108		0.131	0.125	
	SLSC	0.047	0.054	0.042	0.05	0.051	0.051	0.064
	PPCC1	0.977	0.971	0.982	0.971	0.973		
	PPCC2	0.973		0.979	0.971	0.973		
	LLM	66.342	66.686	65.34	67.645	57.466	62.051	65.07

	^{Client:} OPW	Zero
RPS Consulting Engineers	Project: ICPSS, Phase 3	MIKE
Date: 02/05/08	Probability table	Drawing no.
Init: C.Robinson		CR0071



	Client: OPVV	
RPS Consulting E	ngineers Project: ICPSS, Phase 3	
Date: 02/0	05/08 Probability plot	Drawing no.
Init: C.R	obinson	CR0071

Appendix 4: Wave Modelling Tables showing Inshore Wave Climate at 8 Locations

Locations of Eight Wave Modelling Points

Hm0

1.936

1.588

1.205

2.538

2.096

1.614

3.879

3.410

2.874

4.481

4.004

3.412

4.518

4.069

3.494

5.257

5.108

4.793

4.667

4.395

3.955

Inshore Climate

Tm

4.164

3.843

3.442

5.620

5.174

4.615

7.657

7.251

6.732

8.012

7.578

7.026

8.193

7.750

7.185

10.005

9.560

8.860

8.947

8.480

7.871

-6.208076

Output Point 1

1in5

1in20

1in100

Output Point 3

1in100

1in100

1in100

1in100

1in100

1in100

<u>-6.224654</u> <u>53.92582</u>

MWD

32.661

30.458

28.423

62.782

60.880

58.526 85.995

84.602

82.902

98.780

98.303

97.464

111.511

111.750

111.885

120.221

120.163

121.578

132.658

134.043

136.275

53.773

Output Point 2

<u>-6.2186</u> <u>53.82696</u>

	Inshore Climate				
	Hm0	Tm	MWD		
1in5	2.559	5.620	38.076		
1in20	2.193	5.187	34.867		
1in100	1.742	4.649	31.255		
1in5	3.413	6.838	59.268		
1in20	2.865	6.281	55.493		
1in100	2.255	5.587	51.127		
1in5	4.771	8.113	77.443		
1in20	4.203	7.679	76.413		
1in100	3.543	7.128	75.042		
1in5	5.271	8.114	91.574		
1in20	4.652	7.662	91.541		
1in100	3.907	7.088	91.508		
1in5	5.171	8.186	106.581		
1in20	4.556	7.738	107.332		
1in100	3.824	7.174	108.583		
1in5	6.507	10.019	116.244		
1in20	6.072	9.393	117.823		
1in100	5.303	8.580	120.556		
1in5	5.459	9.081	129.540		
1in20	4.922	8.372	132.163		
1in100	4.228	7.673	135.060		
Output Po	int 4	-6.190603	<u>53.68307</u>		
		shore Clima			
	Hm0 Tm MWD				
1in5	3.207	6.562	26.367		
1in20	2 670	E 040	22 820		

	Inshore Climate			Ins	shore Clima	ate	
	Hm0	Tm	MWD		Hm0	Tm	
1in5	2.903	6.200	38.170	1in5	3.207	6.562	
1in20	2.458	5.736	35.399	1in20	2.679	5.949	
1in100	1.935	5.171	31.871	1in100	2.061	5.227	
1in5	3.952	7.149	54.687	1in5	3.619	6.829	
1in20	3.296	6.598	51.993	1in20	2.969	6.310	
1in100	2.543	5.902	48.656	1in100	2.271	5.394	
1in5	5.193	8.164	71.768	1in5	5.192	8.046	
1in20	4.558	7.728	70.956	1in20	4.536	7.566	
1in100	3.819	7.169	70.003	1in100	3.760	6.957	
1in5	5.272	8.083	88.003	1in5	4.885	7.910	
1in20	4.639	7.627	88.287	1in20	4.280	7.420	
1in100	3.891	7.051	88.703	1in100	3.521	6.807	
1in5	4.962	8.146	105.142	1in5	4.378	7.833	
1in20	4.380	7.701	106.187	1in20	3.836	7.373	
1in100	3.698	7.141	107.735	1in100	3.198	6.788	
1in5	6.506	9.885	115.958	1in5	6.475	10.581	
1in20	6.012	9.196	118.178	1in20	6.233	9.958	
1in100	5.252	8.378	121.140	1in100	5.732	9.114	
1in5	5.551	9.011	129.678	1in5	5.463	9.015	
1in20	5.030	8.121	132.892	1in20	5.049	7.989	
1in100	4.349	7.366	136.885	1in100	4.379	7.357	

1 in 100 Joint Probability Return Period - Points 1-4

Where return period refers to water level, Hm0 refers to significant wave height in metres, Tm refers to mean wave period in seconds and MWD is the mean wave direction in degrees from True North.

<u>-6.131002</u> <u>53.63104</u>

Output Point 5

	Ins	hore Clima	ate		Ins	hore Clim
	Hm0	Tm	MWD		Hm0	Tm
in5	3.629	6.773	23.212	1in5	3.018	7.190
in20	3.024	6.140	19.798	1in20	2.511	6.602
lin100	2.313	5.407	16.233	1in100	1.944	5.818
l in5	3.788	6.938	44.761	1in5	3.707	7.251
1 in 20	3.118	6.385	43.340	1in20	3.058	6.643
1in100	2.374	5.495	39.544	1in100	2.334	5.848
1in5	5.226	7.958	67.815	1in5	4.903	7.908
1in20	4.538	7.475	66.868	1in20	4.246	7.416
1in100	3.742	6.868	65.590	1in100	3.502	6.791
1in5	5.061	7.905	86.767	1in5	4.549	7.822
1in20	4.376	7.408	86.655	1in20	3.931	7.327
1in100	3.542	6.783	87.563	1in100	3.213	6.709
1in5	4.362	7.909	101.954	1in5	3.774	7.812
1in20	3.760	7.427	102.977	1in20	3.271	7.329
1in100	3.065	6.822	104.638	1in100	2.693	6.715
1in5	6.829	10.152	107.810	1in5	6.095	10.285
1in20	6.376	9.513	108.595	1in20	5.473	9.688
1in100	5.530	8.855	109.511	1in100	4.742	9.014
1in5	5.175	8.025	123.773	1in5	4.615	9.347
1in20	4.513	7.588	125.176	1in20	4.150	8.682
1in100	3.747	7.065	126.600	1in100	3.589	8.025
Output Po		-6.070923	53.41726	Output Po		-6.102684
	Ins	hore Clima	ate		Ins	hore Clim
	Hm0	Tm	MWD		Hm0	Tm
1 in5	2.946	6.633	37.150	1in5	2.149	5.451
1in20	2.439	6.098	33.247	1in20	1.753	4.959
1in100	1.891	5.418	28.273	1in100	1.327	4.361
1in5	3.866	7.366	55.526	1in5	3.131	7.138
1in20	3.206	6.768	52.590	1in20	2.600	6.557
1in100	2.478	5.980	48.988	1in100	1.978	5.818
1in5	4.580	7.759	71.273	1in5	4.251	7.849
1in20	3.967	7.281	70.773	1in20	3.739	7.368
1in100	3.269	6.676	70.031	1in100	3.092	6.761
1in5	4.567	7.768	87.664	1in5	4.589	7.800
1in20	3.972	7.278	87.939	1in20	4.075	7.327
1in100	3.264	6.666	88.694	1in100	3.375	6.721
1in5	4.139	7.798	101.876	1in5	4.533	7.774
1in20	3.606	7.325	103.058	1in20	4.045	7.311
1in100	2.991	6.728	104.630	1in100	3.397	6.729
1in5	5.885	10.211	105.430	1in5	5.585	9.701
	0.000		100.400	1110	5.000	5.701

Output Point 6

<u>-6.065012</u> <u>53.52728</u>

MWD

38.096

34.726

30.630

54.059

50.915

46.489

69.080

68.414

67.493

85.311

85.880

87.076

100.084

101.442

103.314

106.020

108.735

112.041

123.817

128.318

134.530

<u>53.32763</u>

MWD

51.670

48.262

43.958

69.269

67.761

64.687

84.322

83.158

61 81.099 00 97.917 27 97.618 21 96.791 74 113.748 11 114.592 29 115.591 128.471 9.701 1 IN 5 5.585 1in20 5.308 9.198 128.099 1in100 4.872 8.569 128.151 1in5 4.807 8.630 140.341 8.258 1in20 4.430 140.029 1in100 3.943 7.769 139.981

1 in 100 Joint Probability Return Period - Points 5-8

Where return period refers to water level, Hm0 refers to significant wave height in metres, Tm refers to mean wave period in seconds and MWD is the mean wave direction in degrees from True North.

5.325

4.586

4.356

3.808

3.142

9.660

8.975

9.622

9.079

8.360

106.729

108.143

111.912

113.273

115.467

1in20

1in5

1in20

1in100

1in100

Hm0

2.121

1.800

1.380

2.775

2.439

1.883

4.159

3.707

3.158

4.754

4.306

3.726

4.760

4.362

3.805

5.376

5.279

5.074

4.859

4.647

4.289

Inshore Climate

Tm

4.325

4.196

3.768

5.839

5.846

5.272

7.888

7.499

7.008

8.259

7.843

7.319

8.445

8.021

7.485

10.414

9.903

9.288

9.261

8.841

8.275

Output Point 1

1in5

1in20

1in100

1in100

1in100

1in100

1in100

1in100

1in100

<u>-6.224654</u> <u>53.92582</u>

MWD

33.800

34.108

30.373

63.623

64.623

61.981

86.543

85.476

83.741

98.954

98.561

97.825

111.388

111.658 111.869

120.048

120.196

120.701

132.031

133.103

134.931

Output Point 2

<u>-6.2186</u> <u>53.82696</u>

	Inshore Climate				
	Hm0	Tm	MWD		
1in5	2.751	5.862	39.782		
1in20	2.377	5.674	38.326		
1in100	1.916	5.127	34.329		
1in5	3.687	7.118	60.768		
1in20	3.271	7.055	59.975		
1in100	2.600	6.351	55.728		
1in5	5.107	8.362	77.866		
1in20	4.551	7.943	77.003		
1in100	3.889	7.419	75.724		
1in5	5.618	8.370	91.582		
1in20	5.033	7.937	91.549		
1in100	4.295	7.392	91.508		
1in5	5.527	8.441	106.257		
1in20	4.933	8.011	106.910		
1in100	4.204	7.473	107.990		
1in5	6.774	10.492	115.385		
1in20	6.457	9.864	116.665		
1in100	5.851	9.093	118.822		
1in5	5.820	9.591	127.859		
1in20	5.356	8.897	130.387		
1in100	4.703	8.108	133.433		
Output Po	oint 4	<u>-6.190603</u>	<u>53.68307</u>		
	Inc	shore Clima	ate		
	Hm0 Tm MWD				
1in5	3.496	6.788	27.097		
1in20	3.269	6.820	27.110		
1in100	2.557	6.145	24.484		

Output Point 3		<u>-6.208076</u>	<u>53.773</u>
	Ins	shore Clima	ate
	Hm0	Tm	MWD
1in5	3.143	6.435	39.403
1in20	2.737	6.276	38.281
1in100	2.187	5.685	34.889
1in5	4.309	7.417	56.118
1in20	3.836	7.314	55.174
1in100	3.016	6.628	52.005
1in5	5.560	8.414	72.117
1in20	4.946	7.994	71.421
1in100	4.205	7.465	70.490
1in5	5.643	8.342	87.899
1in20	5.026	7.905	88.117
1in100	4.282	7.355	88.496
1in5	5.312	8.401	104.699
1in20	4.737	7.972	105.595
1in100	4.054	7.438	106.998
1in5	6.834	10.423	114.796
1in20	6.435	9.723	116.636
1in100	5.781	8.888	119.394
1in5	5.887	9.475	127.843
1in20	5.448	8.812	130.627
1in100	4.816	7.839	134.488

1IN5	3.496	6.788	27.097
1in20	3.269	6.820	27.110
1in100	2.557	6.145	24.484
1in5	3.944	7.121	46.436
1in20	3.694	7.126	46.075
1in100	2.870	6.380	44.165
1in5	5.559	8.319	67.148
1in20	4.944	7.866	66.380
1in100	4.171	7.284	65.581
1in5	5.244	8.194	84.841
1in20	4.656	7.722	85.149
1in100	3.943	7.141	85.515
1in5	4.677	8.240	101.430
1in20	4.175	7.657	103.486
1in100	3.539	7.103	104.802
1in5	6.617	10.989	102.561
1in20	6.334	9.802	104.786
1in100	6.116	9.653	106.164
1in5	5.771	9.451	115.530
1in20	5.363	7.979	120.182
1in100	4.855	7.724	122.637

1 in 200 Joint Probability Return Period - Points 1-4

Where return period refers to water level, Hm0 refers to significant wave height in metres, Tm refers to mean wave period in seconds and MWD is the mean wave direction in degrees from True North.

Hm0

3.971

3.687

2.871

4.126

3.823

2.981

5.619

4.967

4.162

5.465

4.796

3.998

4.740

4.128

3.425

7.056

6.615

6.113

5.674

4.960

4.249

Hm0

3.175

2.842

2.218

4.212

3.785

2.968

4.955

4.345

3.637

4.934

4.335

3.644

4.478

3.936

3.320

6.231

5.569

5.091

4.747

3.920

3.582

Inshore Climate

Tm

6.986

6.985

6.299

7.225

7.217

6.497

8.230

7.776

7.193

8.189

7.714

7.113

8.185

7.724

7.148

10.589

9.328

9.301

8.403

7.398

7.415

-6.070923

Inshore Climate

Tm 7.054

6.897

6.240

7.643

7.612

6.883

8.034

7.577

7.000

8.051

7.581

6.991

8.069

7.616

7.047

8.819

9.433

9.997

8.034

8.837

10.607

Output	Point 5

1in5

1in20

1in5 1in20

1in5

1in20

1in5

1in20 1in100

1in5

1in20

1in5

1in20

1in5

1in5

1in20

1in5

1in20

1in5

1in20

1in5

1in20

1in5

1in20

1in5 1in20

1in5

1in20

1in100

1in100

1in100

1in100

1in100

1in100

1in100

1in20

1in100

Output Point 7

1in100

1in100

1in100

1in100

1in100

<u>-6.131002</u> <u>53.63104</u>

MWD

23.874

23.945

20.686

45.587

45.210

43.138

68.404 67.313

66.213

86.839

86.727

86.627

101.331

102.397

103.836

107.536 109.211

108.973

122.301

125.905

125.734

53.41726

MWD

39.646 38.256

33.714 56.692

55.606

52.365

71.559

71.030

70.420

87.519

87.839

88.171

101.140

102.387

103.798

104.852

107.505

107.350

111.250

116.170

114.137

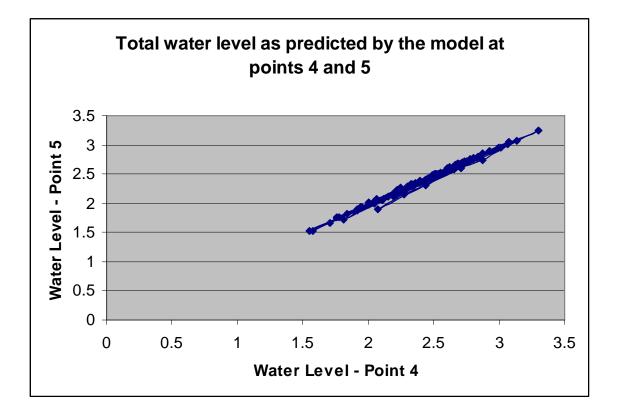
Output Point 6

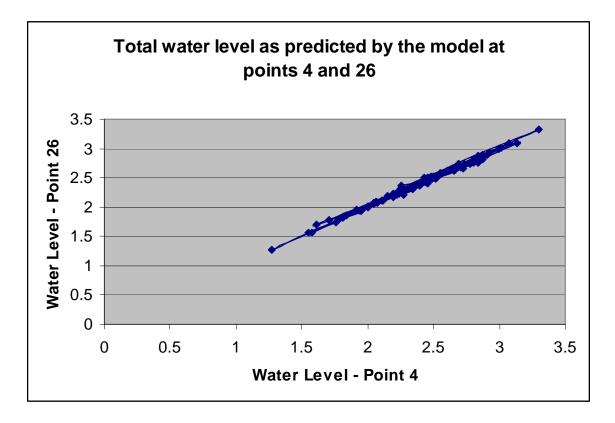
<u>-6.065012</u> <u>53.52728</u>

	Inshore Climate			
	Hm0	Tm	MWD	
1in5	3.277	7.471	39.352	
1in20	3.004	7.445	38.308	
1in100	2.368	6.743	34.599	
1in5	4.031	7.543	54.997	
1in20	3.693	7.508	54.161	
1in100	2.882	6.777	50.923	
1in5	5.300	8.189	69.470	
1in20	4.652	7.721	68.748	
1in100	3.894	7.126	67.952	
1in5	4.926	8.107	85.183	
1in20	4.309	7.632	85.578	
1in100	3.590	7.040	86.453	
1in5	4.082	8.091	99.542	
1in20	3.580	7.628	100.757	
1in100	2.998	7.045	102.445	
1in5	6.453	10.675	105.120	
1in20	5.885	9.174	108.444	
1in100	5.216	9.479	110.225	
1in5	5.009	9.650	121.681	
1in20	4.477	8.092	129.307	
1in100	3.973	8.515	130.583	
<u>Output Poir</u>	nt 8	<u>-6.102684</u>	<u>53.32763</u>	
	Ins	hore Clima	ite	
	∐m0	Tm		

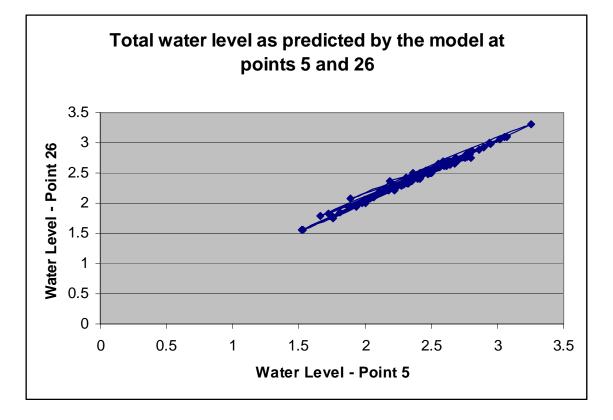
	Inshore Climate			
	Hm0	Tm	MWD	
1in5	2.356	5.678	52.699	
1in20	2.040	5.621	52.858	
1in100	1.560	4.977	48.314	
1in5	3.399	7.365	69.686	
1in20	3.029	7.323	69.535	
1in100	2.376	6.629	67.493	
1in5	4.541	8.125	84.790	
1in20	4.067	7.664	83.792	
1in100	3.440	7.086	82.165	
1in5	4.871	8.074	97.986	
1in20	4.413	7.619	97.794	
1in100	3.755	7.047	97.272	
1in5	4.812	8.045	113.283	
1in20	4.366	7.597	114.111	
1in100	3.754	7.042	115.071	
1in5	5.794	10.074	128.893	
1in20	5.596	8.233	131.153	
1in100	5.210	8.998	127.998	
1in5	5.091	8.908	140.600	
1in20	4.812	7.553	142.671	
1in100	4.289	8.106	139.931	

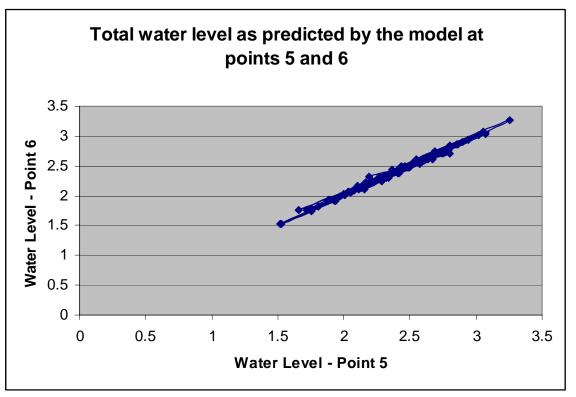
1 in 200 Joint Probability Return Period - Points 5-8

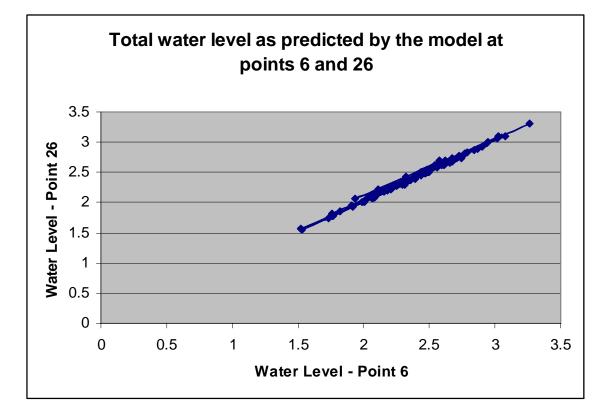

Where return period refers to water level, Hm0 refers to significant wave height in metres, Tm refers to mean wave period in seconds and MWD is the mean wave direction in degrees from True North.

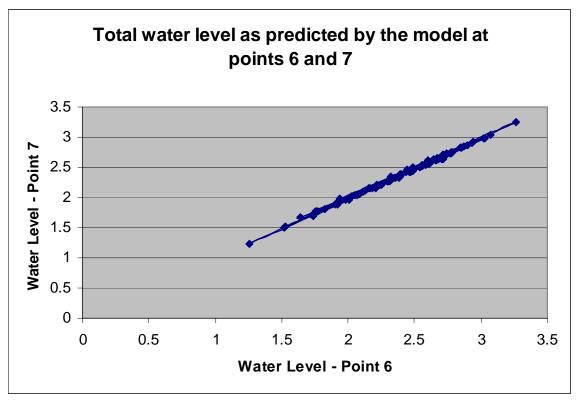


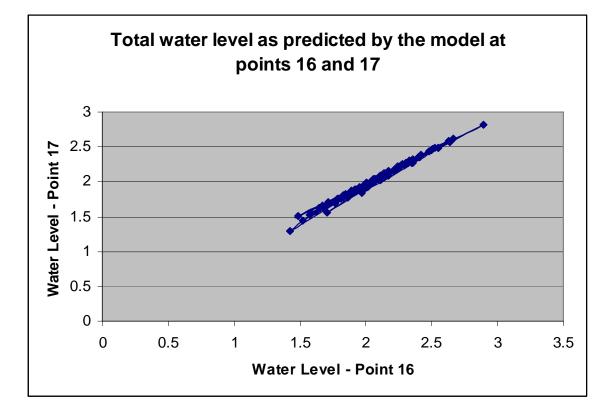
Appendix 5: Correlation Plots for Points 4, 5, 6 and 17

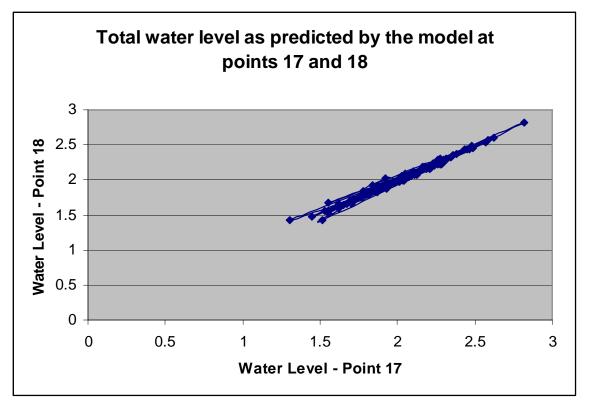












Appendix 6: Quality Control Survey Report

Appendix 6

Quality Control Survey Report

1.0 Introduction

Quality control assessments were undertaken to verify the accuracy of the north east coast Digital Terrain Model (DTM) and also to verify the accuracy of the flood extents generated by RPS from the combination of the predicted extreme water levels with the DTM. These assessments were focussed on five main urban centres considered to be vulnerable to coastal flooding.

To facilitate these assessments, the client conducted a Quality Control (QC) survey for six sample areas on the north east coast; namely Port Oriel, Balbriggan, Malahide, Drogheda, Dundalk and Dublin; recording the level of hard surfaces in the vicinity of the 0.5% AEP flood extent. The survey data was processed by the client and used for comparing the accuracy of the DTM with these points as well as the alignment of the flood extent. This provided an indication of the likely accuracy of the flood extents generated from the DTM.

This report presents the methodology and results of the QC survey together with the results of the assessment of both the DTM and flood extent accuracy relative to the QC survey points.

2.0 Methodology

RPS used the north east coast DTM to generate the flood extents for the north east coast. This DTM was derived using medium resolution topographic LiDAR data flown by BLOM Aerofilms Ltd in 2006.

The client carried out QC surveys of areas along the north east coast, with the results used to assess the accuracy of the DTM. This section outlines the methodologies used by the client in carrying out these surveys.

2.1 Survey Methodology

The client carried out several topographic QC surveys, between 2006 and 2008 using a DSNP Scorpio 6002 MK & SK GPS system and Thales Navigation Z-max Surveying System. These systems are Real Time Kinematic (RTK) Satellite Survey Systems. During the surveys, QC points were collected from hard surfaces only including the centreline of footpaths, edges of roads, entrances to industrial areas, car parks and piers.

Each road was covered by at least one survey line with level spacing of typically 5 metres. The QC survey was to be carried out to a vertical accuracy of \pm 50mm and a horizontal accuracy of \pm 50mm.

In the DTM survey specification the minimum accuracy required for elevation data was specified as ± 0.2 m. Additionally, all DTM models were to have a target vertical accuracy of not greater than 0.15m i.e. display an RMSE less than 0.15m with 99% of all points within two times the RMSE.

During the QC survey, known OSI GPS passive control stations at Balbriggan, Malahide, Drogheda, Dundalk, Howth and Dun Laoghaire were used. Working from Drogheda and Ardee passive control stations, a new local base station was set up at Port Oriel. The stations were used as a basis for survey control and set up; station co-ordinates and elevations are presented in Table 1.

Station name	Easting (m)	Northing (m)	Height (m)	
Port Oriel	317207.442	284628.789	3.239	
Balbriggan	319907.096	264166.280	11.469	
Malahide	322781.667	246314.020	3.215	
Drogheda	308932.672	276204.875	35.771	
Dundalk	308291.414	307804.956	4.024	
Howth	Howth 328890.213		4.041	
Dun Laoghaire	Dun Laoghaire324808.924		6.059	

Table 1: Passive control stations used by OPW for North East Coast QC Survey

2.2 Survey Data and Accuracy Statistics

The QC survey data was used to quality control the DTM and flood extents in two ways. Initially, the survey points at each location were compared to the equivalent DTM elevation at the same location. This enabled a vertical accuracy assessment of the DTM to be made relative to the recorded survey point data.

The difference between the DTM and the QC survey points is referred to as height difference for the purpose of this report, such that all positive values describe areas where the DTM underestimated elevation and negative values where the DTM overestimated elevation. A number of rogue points discovered during this assessment were discarded, allowing more reliable statistics of height difference to be calculated including the mean, maximum, minimum, standard deviation, 95th percentile, upper and lower 95% confidence limits (estimated using the 2.5% and 97.5% percentile values), upper and lower 99% confidence limits (estimated using the 0.5% and 99.5% percentile values) and the RMSE (Root Mean Squared Error).

Rogue points identified and removed from the analysis included those located beyond the spatial limits of the DTM, on the periphery of the DTM, over water (i.e. located on bridges) or in areas where a known land use change had occurred between the time of the LiDAR data acquisition (2006) and the topographic surveys (2006-2008).

3.0 Comparison of DTM and Survey Data

The results of the assessment of the north east coast DTM vertical accuracy is presented below for each of the six urban centres; Port Oriel, Balbriggan, Malahide, Drogheda, Dundalk and Dublin. The spatial distribution of the recorded survey points at each location is shown in Figures 8 to 14 of Appendix 6A together with the height difference calculated between each survey point and DTM. Each point is colour-coded to show the difference between survey height and DTM height, with green and blue reflecting positive differences in excess of the tolerance and red and orange showing negative differences in excess of the tolerance. Points meeting the specified tolerance of $\pm 0.2m$ are displayed in yellow.

3.1 Port Oriel

The Port Oriel survey data was compared with the DTM elevations at the same locations and height difference statistics were calculated. The results of this analysis for Port Oriel are shown in Table 2.

Mean	0.020		
Maximum	2.423		
Minimum	-0.877		
Standard Deviation	0.218		
95 th Percentile	0.157		
Upper 95% Confidence Limit	0.283		
Lower 95% Confidence Limit	-0.267		
Upper 99% Confidence Limit	1.530		
Lower 99% Confidence Limit	-0.337		
RMSE	0.219		
Count	487		
No. Survey Points outside tolerance (± 0.2m)	35 (7.2%)		

The statistics in Table 2 are based on the comparison of 487 survey points. Many of the larger height differences were found close to the edges of the DTM and around piers and jetties as would be expected. The RMSE value of +0.22m is just outside

the specified tolerance value. The accuracy of the DTM at Port Oriel is between -0.27m and +0.28m at the 95% confidence limit and between -0.34m and +1.53m at the 99% confidence limit.

The distribution of height difference values for Port Oriel is shown in Figure 1.

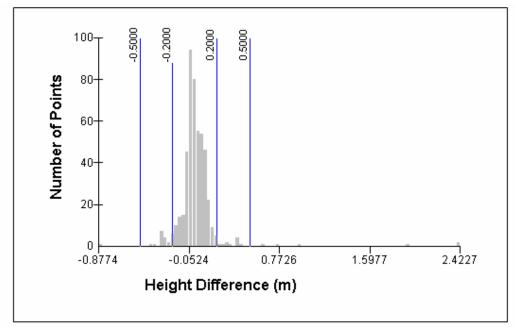
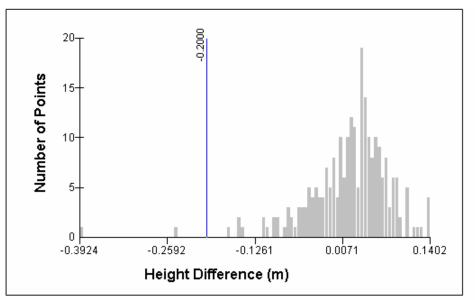


Figure 1: Port Oriel Height Difference Distribution

3.2 Balbriggan


The Balbriggan survey data was compared with the DTM elevations at the same locations and height difference statistics were calculated. The results of this analysis for Balbriggan are shown in Table 3.

HEIGHT DIFFERENCE (METRES)				
Mean	0.017			
Maximum	0.140			
Minimum	-0.392			
Standard Deviation	0.063			
95 th Percentile	0.095			
Upper 95% Confidence Limit	0.117			
Lower 95% Confidence Limit	-0.112			
Upper 99% Confidence Limit	0.138			
Lower 99% Confidence Limit	-0.230			
RMSE	0.065			
Count	242			
No. Survey Points outside tolerance (± 0.2m)	2 (0.8%)			

Table 3: Balbriggan Height Difference Statistics

The statistics in Table 3 are based on the comparison of 242 survey points. It is apparent that the mean height difference and standard deviation values are low and the RMSE value (+0.07m) meets the specified tolerance. The accuracy of the DTM at Balbriggan is between -0.11m and +0.12m at the 95% confidence limit and between -0.23m and +0.14m at the 99% confidence limit.

The distribution of height difference values for Balbriggan is shown in Figure 2.

Figure 2: Balbriggan Height Difference Distribution

3.3 Malahide

The Malahide survey data was compared with the DTM elevations at the same locations and height difference statistics were calculated. The results of this analysis for Malahide are shown in Table 4.

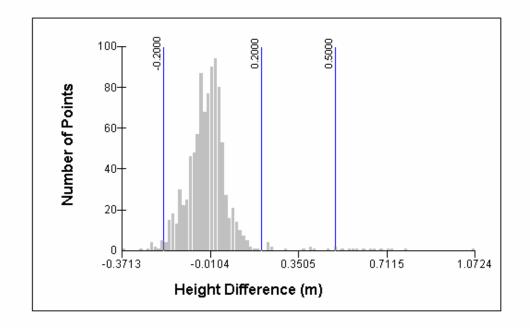

HEIGHT DIFFERENCE (METRES)				
Mean	-0.013			
Maximum	1.072			
Minimum	-0.371			
Standard Deviation	0.116			
95 th Percentile	0.113			
Upper 95% Confidence Limit	0.228			
Lower 95% Confidence Limit	-0.175			
Upper 99% Confidence Limit	0.671			
Lower 99% Confidence Limit	-0.247			
RMSE	0.116			
Count	972			
No. Survey Points outside tolerance (± 0.2m)	41 (4.2%)			

Table 4: Malahide Height Difference Statistics

The statistics in Table 4 are based on the comparison of 972 QC survey points. The mean height difference and standard deviation values are low and the RMSE value (+0.12m) meets the specified tolerance. The accuracy of the DTM at Malahide is between -0.18m and +0.23m at the 95% confidence limit and between -0.25m and +0.67m at the 99% confidence limit.

The distribution of height difference values for Malahide is shown in Figure 3.

Figure 3: Malahide Height Difference Distribution

3.4 Drogheda

The Drogheda survey data was compared with the DTM elevations at the same locations and height difference statistics were calculated. The results of this analysis for Drogheda are shown in Table 5.

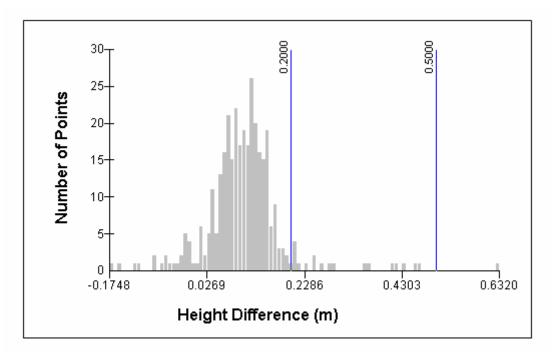

HEIGHT DIFFERENCE (METRES)				
Mean	0.104			
Maximum	0.632			
Minimum	-0.175			
Standard Deviation	0.083			
95 th Percentile	0.209			
Upper 95% Confidence Limit	0.283			
Lower 95% Confidence Limit	-0.057			
Upper 99% Confidence Limit	0.463			
Lower 99% Confidence Limit	-0.134			
RMSE	0.133			
Count	333			
No. Survey Points outside tolerance (± 0.2m)	19 (5.7%)			

Table 5: Drogheda Height Difference Statistics
--

The statistics in Table 5 are based on the comparison of 333 survey points out of a total of 366 gathered. A total of 33 points were deemed invalid and discarded from the analysis, due to their location above bridges (19) and along the DTM boundary (14).

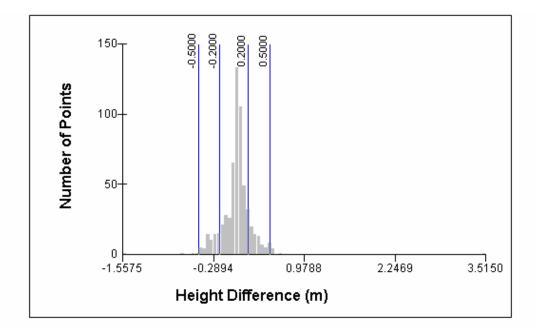
The mean height difference and standard deviation values are low and the RMSE of +0.13m meets the specified tolerance. The accuracy of the DTM at Drogheda is between -0.06m and +0.28m at the 95% confidence limit and between -0.13m and +0.46m at the 99% confidence limits.

The distribution of height difference values for Drogheda is shown in Figure 4.

3.5 Dundalk (2006)

The Dundalk (2006) survey data was compared with the DTM elevations at the same locations and height difference statistics were calculated. The results of this analysis for Dundalk (2006) are shown in Table 6.

HEIGHT DIFFERENCE (ME	IRES)
Mean	0.043
Maximum	3.515
Minimum	-1.558
Standard Deviation	0.239
95 th Percentile	0.348
Upper 95% Confidence Limit	0.469
Lower 95% Confidence Limit	-0.376
Upper 99% Confidence Limit	0.545
Lower 99% Confidence Limit	-0.504
RMSE	0.243
Count	610
No. Survey Points outside tolerance (± 0.2m)	149 (24.4%)

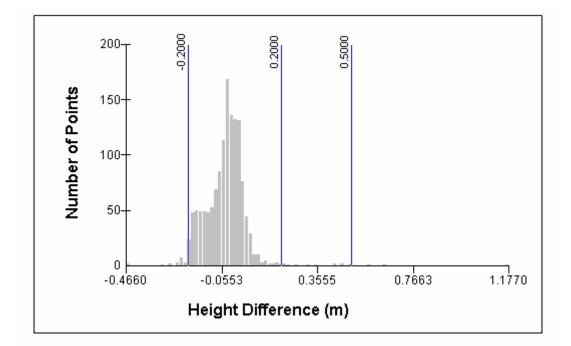

Table 6: Dundalk (2006) Height Difference Statistics

The statistics in Table 6 are based on the comparison of 610 survey points out of a total of 630. A total of 20 points were deemed invalid and discarded from the analysis due to their location at the peripheral of the DTM (16 points) or above water on bridges (4 points).

The mean height difference is low but the RMSE value of +0.24m is just outside the specified tolerance. The accuracy of the DTM at Dundalk using the 2006 QC survey data is between -0.38m and +0.47m at the 95% confidence limit and between -0.50m and +0.55m at the 99% confidence limits.

The distribution of height difference values for Dundalk (2006) is shown in Figure 5.

Figure 5: Dundalk (2006) Height Difference Distribution


3.6 Dundalk (2008)

The Dundalk (2008) survey data was compared with the DTM elevations at the same locations and height difference statistics were calculated. The results of this analysis for Dundalk (2008) are shown in Table 7.

HEIGHT DIFFERENCE (METRES)				
Mean	-0.040			
Maximum	1.177			
Minimum	-0.466			
Standard Deviation	0.092			
95 th Percentile	0.065			
Upper 95% Confidence Limit	0.102			
Lower 95% Confidence Limit	-0.190			
Upper 99% Confidence Limit	0.436			
Lower 99% Confidence Limit	-0.237			
RMSE	0.103			
Count	1371			
No. Survey Points outside tolerance (± 0.2m)	33 (2.4%)			

The statistics in Table 7 are based on the comparison of 1371 survey points out of a total of 1380. A total of 9 points were discarded from the analysis as they were gathered from a location which had been developed since the LiDAR data was flown in 2006.

The mean height difference and standard deviation values are both very low and the RMSE value of +0.10m clearly meets the specified tolerance. The accuracy of the DTM at Dundalk using the 2008 QC survey data is between -0.19m and +0.10m at the 95% confidence limit and between -0.24m and +0.44m at the 99% confidence limits.

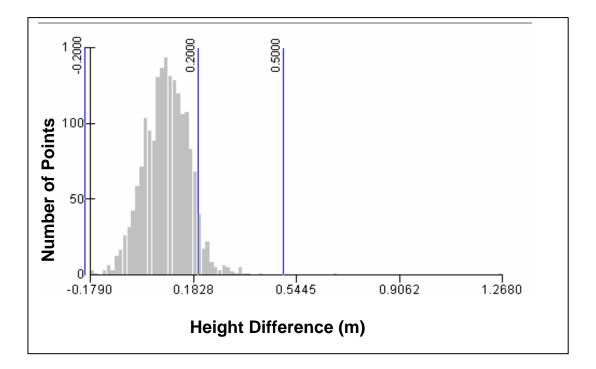
The distribution of height difference values for Dundalk (2008) is shown in Figure 6.

Figure 6: Dundalk (2008) Height Difference Distribution

3.7 Dublin

The Dublin survey data was compared with the DTM elevations at the same locations and height difference statistics were calculated. The results of this analysis for Dublin are shown in Table 8.

Mean	0.091
Maximum	1.268
Minimum	-0.179
Standard Deviation	0.084
95 th Percentile	0.206
Upper 95% Confidence Limit	0.235
Lower 95% Confidence Limit	-0.060
Upper 99% Confidence Limit	0.345
Lower 99% Confidence Limit	-0.115
RMSE	0.123
Count	1828
No. Survey Points outside tolerance (± 0.2m)	110 (6.01%)


Table 8: Dublin Height Difference Statistics

The statistics in Table 8 are based on the comparison of 1828 survey points out of a total of 1922. A total of 92 points were discarded from the analysis as they were gathered from a location which had been developed since the LiDAR data was flown in 2006 or were on the edge of the DTM.

The mean height difference and standard deviation values are both very low and the RMSE value of +0.12m clearly meets the specified tolerance. The accuracy of the DTM at Dublin using the 2008 QC survey data is between -0.06m and +0.24m at the 95% confidence limit and between -0.12m and +0.35m at the 99% confidence limits.

The distribution of height difference values for Dublin is shown in Figure 7.

Figure 7: Dublin Height Difference Distribution

3.8 Summary of Results

The overall results of the assessment of the DTM vertical accuracy in the main urban centres and other surveyed areas along the north east coast, based on comparison with the quality control survey data, are summarised in Table 9.

Table 9 shows the calculated height difference statistics, including the maximums, minimums, standard deviations, 95th percentiles and means for each of the areas together with the combined statistics for all twelve areas. The total number of survey points used in the analysis is also shown in Table 9.

	Port Oriel	Balbriggan	Malahide	Drogheda	Dundalk (2006)	Dundalk (2008)	Dublin	Total
Original No.	407					1000	4000	5000
Points	487	242	972	366	630	1380	1922	5999
Final No. Points	487	242	972	333	610	1371	1828	5843
Removed Points	0	0	0	33	20	9	92	154
Maximum	2.423	0.140	1.072	0.632	3.515	1.177	1.268	3.515
Minimum	-0.877	-0.392	-0.371	-0.175	-1.558	-0.466	-0.179	-1.558
Mean	0.020	0.017	-0.013	0.104	0.043	-0.040	0.091	0.030
Standard								
Deviation	0.218	0.063	0.116	0.083	0.239	0.092	0.084	0.152
95th Percentile	0.157	0.095	0.113	0.209	0.348	0.065	0.206	0.196
Upper 95%								
Confidence limit	0.283	0.117	0.228	0.283	0.469	0.102	0.235	0.255
Lower 95%								
Confidence limit	-0.267	-0.112	-0.175	-0.057	-0.376	-0.190	-0.060	-0.187
Upper 99%								
Confidence limit	1.530	0.138	0.671	0.463	0.545	0.436	0.345	0.522
Lower 99%								
Confidence limit	-0.337	-0.230	-0.247	-0.134	-0.504	-0.237	-0.115	-0.350
RMSE	0.219	0.065	0.116	0.133	0.243	0.103	0.123	0.144

Table 9: Statistical Results for 6 Urban Areas

For all six locations mean height difference and standard deviation values range between -0.04m and +0.10m and between +0.06m and +0.24m respectively. Maximum height differences range between 0.14m to 3.52m and minimum height differences range between -1.56m to -0.18m. The RMSE of height difference values in general is low, ranging from 0.07m at Balbriggan to 0.24m at Dundalk (2006).

At Balbriggan only 0.8% of the QC survey points lie outside of the specified tolerance range (\pm 0.2m) compared to 4.2% and 7.2% of points at Malahide and Port Oriel respectively. The corresponding figures for Drogheda, Dundalk and Dublin are 5.7%, 24.4% (Dundalk 2006), 2.4% (Dundalk 2008) and 6.0% respectively.

The results also indicate that at the 95% confidence limit the accuracy of the DTM varies from between:

- -0.27m to +0.28m at Port Oriel
- -0.18m to +0.23m at Malahide
- -0.11m to +0.12m at Balbriggan
- -0.06m to 0.28m at Drogheda
- -0.38m to +0.47m at Dundalk (2006)
- -0.19m to +0.10m at Dundalk (2008).
- -0.06 to +0.24m at Dublin

At the 99% confidence limit the accuracy of the DTM varies from between:

- -0.34m to +1.53m at Port Oriel
- -0.25m to +0.67m at Malahide
- -0.23m to +0.14m at Balbriggan
- -0.13m to +0.46m at Drogheda
- -0.50m to 0.55m at Dundalk (2006)
- -0.24m to +0.44m at Dundalk (2008)
- -0.12m to +0.35m at Dublin

Combining all locations, at the 95% confidence limit the accuracy of the DTM varies between -0.19m to 0.25m and between -0.35m to 0.52m at the 99% confidence limit. The overall RMSE is 0.144m.

4.0 Comparison of Flood Extents and Survey Data

To assess the accuracy of the flood extents generated from the DTM, a level comparison was also undertaken between the flood extents and survey points for twelve locations. This was done by selecting a sample area from different urban centres and comparing flood extent and survey levels within. The results of this assessment are shown in Figures 15 to 38 of Appendix 6B. The assessment was undertaken for both flood extents associated with the 0.5% and 0.1% AEP. These figures show the spatial distribution of the survey points relative to the flood extents in each sample area. The results for each location centre are outlined below.

4.1 Cruisetown (Port Oriel Survey Points)

The results of the flood extent accuracy assessment for Cruisetown are shown in Figures 15 and 16. These figures show the flood extents produced from the DTM for the 0.5% and 0.1% AEP and the predicted flood levels associated with these events i.e. 3.78m O.D. Malin for 0.1% AEP and 3.55m O.D. Malin for 0.5% AEP in the selected area. Figure 15 highlights those survey points in yellow which should fall within the 0.5% AEP flood extent and Figure 16 shows those survey points in green which should fall within the 0.1% AEP flood extent. In the sample area selected it can be seen that less than ten percent of the yellow points lie outside the 0.5% AEP flood extents.

The maximum horizontal distance between the 0.5% AEP flood extent and those survey points shown outside of this flood extent but below the 0.5% flood level was found to be approximately 1m. The maximum horizontal distance between the 0.1% AEP flood extent and those survey points shown outside of this flood extent but below the 0.1% flood level was shown to be approximately 0.1m.

4.2 Malahide Area 1

The results of the flood extent accuracy assessment for Malahide are shown in Figures 17 and 18. These figures show the flood extents produced from the DTM for the 0.5% and 0.1% AEP and the predicted flood levels associated with these events i.e. 3.42m O.D. Malin for 0.1% AEP and 3.21m O.D. Malin for 0.5% AEP in the selected area. Figure 17 highlights those survey points in yellow which should fall within the 0.5% AEP flood extent and Figure 18 shows those survey points in green which should fall within the 0.1% AEP flood extent. In the sample area selected it can

be seen that approximately five percent of the yellow points lie outside the 0.5% AEP flood extent and two of the green points lie outside the 0.1% AEP flood extent.

The maximum horizontal distance between the 0.5% AEP flood extent and those survey points shown outside of this flood extent but below the 0.5% flood level was found to be approximately 2.1m. The maximum horizontal distance between the 0.1% AEP flood extent and those survey points shown outside of this flood extent but below the 0.1% flood level was shown to be approximately 0.4m.

4.3 Donabate (Malahide Survey Points)

The results of the flood extent accuracy assessment for Malahide are shown in Figures 19 and 20. These figures show the flood extents produced from the DTM for the 0.5% and 0.1% AEP and the predicted flood levels associated with these events i.e. 3.49m O.D. Malin for 0.1% AEP and 3.25m O.D. Malin for 0.5% AEP in the selected area. Figure 19 highlights those survey points in yellow which should fall within the 0.5% AEP flood extent and Figure 20 shows those survey points in green which should fall within the 0.1% AEP flood extent. In the sample area selected it can be seen that no more than ten percent of the yellow points lie outside the 0.5% AEP flood extent.

The maximum horizontal distance between the 0.5% AEP flood extent and those survey points shown outside of this flood extent but below the 0.5% flood level was found to be approximately 2.6m. The maximum horizontal distance between the 0.1% AEP flood extent and those survey points shown outside of this flood extent but below the 0.1% flood level was shown to be approximately 2.3m.

4.4 Drogheda Area 1

The results of the flood extent accuracy assessment for Drogheda area 1 are shown in Figures 21 and 22. These Figures show the flood extents produced from the DTM for the 0.5% and 0.1% AEP and the predicted flood levels associated with these events i.e. 3.69m O.D. Malin for 0.1% AEP and 3.48m O.D. Malin for 0.5% AEP in the selected area. Figure 21 highlights those survey points in yellow which should fall within the 0.5% AEP flood extent and Figure 22 shows those survey points in green which should fall within the 0.1% AEP flood extent. In the sample area selected it can be seen that only two of the yellow points lie outside the 0.5% AEP flood extent.

The maximum horizontal distance between the 0.5% AEP flood extent and those survey points shown outside of this flood extent but below the 0.5% flood level was found to be approximately 0.6m. The maximum horizontal distance between the 0.1% AEP flood extent and those survey points shown outside of this flood extent but below the 0.1% flood level was shown to be 0m.

4.5 Drogheda Area 2

The results of the flood extent accuracy assessment for Drogheda area 2 are shown in Figures 23 and 24. These Figures show the flood extents produced from the DTM for the 0.5% and 0.1% AEP and the predicted flood levels associated with these events i.e. 3.69m O.D. Malin for 0.1% AEP and 3.48m O.D. Malin for 0.5% AEP in the selected area. Figure 23 highlights those survey points in yellow which should fall within the 0.5% AEP flood extent and Figure 24 shows those survey points in green which should fall within the 0.1% AEP flood extent. In the sample area selected it can be seen that none of the yellow points lie outside the 0.5% AEP flood extent.

The maximum horizontal distance between the 0.5% AEP flood extent and those survey points shown outside of this flood extent but below the 0.5% flood level was therefore 0m. The maximum horizontal distance between the 0.1% AEP flood extent and those survey points shown outside of this flood extent but below the 0.1% flood level was also shown to be 0m.

4.6 Dundalk Area 1 (Dundalk 2008 Survey Points)

The results of the flood extent accuracy assessment for Dundalk area 1 are shown in Figures 25 and 26. These Figures show the flood extents produced from the DTM for the 0.5% and 0.1% AEP and the predicted flood levels associated with these events i.e. 3.93m O.D. Malin for 0.1% AEP and 3.71m O.D. Malin for 0.5% AEP in the selected area. Figure 25 highlights those survey points in yellow which should fall within the 0.5% AEP flood extent and Figure 26 shows those survey points in green which should fall within the 0.1% AEP flood extent. In the sample area selected it can be seen that two of the yellow points lie outside the 0.5% AEP flood extent and none of the green points lie outside the 0.1% AEP flood extent.

The maximum horizontal distance between the 0.5% AEP flood extent and those survey points shown outside of this flood extent but below the 0.5% flood level was

found to be approximately 0.5m. The maximum horizontal distance between the 0.1% AEP flood extent and those survey points shown outside of this flood extent but below the 0.1% flood level was shown to be 0m.

4.7 Dundalk Area 2 (Dundalk 2006 and 2008 Survey Points)

The results of the flood extent accuracy assessment for Dundalk area 2 are shown in Figures 27 and 28. These Figures show the flood extents produced from the DTM for the 0.5% and 0.1% AEP and the predicted flood levels associated with these events i.e. 3.94m O.D. Malin for 0.1% AEP and 3.72m O.D. Malin for 0.5% AEP in the selected area. Figure 27 highlights those survey points in yellow which should fall within the 0.5% AEP flood extent and Figure 28 shows those survey points in green which should fall within the 0.1% AEP flood extent. In the sample area selected it can be seen that one of the yellow points lies outside the 0.5% AEP flood extent and five of the green points lie outside the 0.1% AEP flood extent.

The maximum horizontal distance between the 0.5% AEP flood extent and those survey points shown outside of this flood extent but below the 0.5% flood level was found to be approximately 0.4m. The maximum horizontal distance between the 0.1% AEP flood extent and those survey points shown outside of this flood extent but below the 0.1% flood level was shown to be approximately 1.8m.

4.8 Dundalk Area 3 (Dundalk 2008 Survey Points)

The results of the flood extent accuracy assessment for Dundalk area 3 are shown in Figures 29 and 30. These Figures show the flood extents produced from the DTM for the 0.5% and 0.1% AEP and the predicted flood levels associated with these events i.e. 3.93m O.D. Malin for 0.1% AEP and 3.71m O.D. Malin for 0.5% AEP in the selected area. Figure 29 highlights those survey points in yellow which should fall within the 0.5% AEP flood extent and Figure 30 shows those survey points in green which should fall within the 0.1% AEP flood extent. In the sample area selected it can be seen that no more than ten percent of the yellow points lie outside the 0.5% AEP flood extent.

The maximum horizontal distance between the 0.5% AEP flood extent and those survey points shown outside of this flood extent but below the 0.5% flood level was found to be approximately 6.8m. The maximum horizontal distance between the

0.1% AEP flood extent and those survey points shown outside of this flood extent but below the 0.1% flood level was shown to be approximately 7.4m.

4.9 Ballsbridge (Dublin Survey Points)

The results of the flood extent accuracy assessment for Ballsbridge are shown in Figures 31 and 32. These Figures show the flood extents produced from the DTM for the 0.5% and 0.1% AEP and the predicted flood levels associated with these events i.e. 3.43m O.D. Malin for 0.1% AEP and 3.2m O.D. Malin for 0.5% AEP in the selected area. Figure 31 highlights those survey points in yellow which should fall within the 0.5% AEP flood extent and Figure 32 shows those survey points in green which should fall within the 0.1% AEP flood extent. In the sample area selected it can be seen that one of the yellow points lies outside the 0.5% AEP flood extent and one of the green points lies outside the 0.1% AEP flood extent.

The maximum horizontal distance between the 0.5% AEP flood extent and those survey points shown outside of this flood extent but below the 0.5% flood level was found to be approximately 0.6m. The maximum horizontal distance between the 0.1% AEP flood extent and those survey points shown outside of this flood extent but below the 0.1% flood level was shown to be approximately 1.8m.

4.10 Clontarf (Dublin Survey Points)

The results of the flood extent accuracy assessment for Clontarf are shown in Figures 33 and 34. These Figures show the flood extents produced from the DTM for the 0.5% and 0.1% AEP and the predicted flood levels associated with these events i.e. 3.44m O.D. Malin for 0.1% AEP and 3.21m O.D. Malin for 0.5% AEP in the selected area. Figure 33 highlights those survey points in yellow which should fall within the 0.5% AEP flood extent and Figure 34 shows those survey points in green which should fall within the 0.1% AEP flood extent. In the sample area selected it can be seen that no more than ten percent of the yellow points lie outside the 0.5% AEP flood extent. AEP flood extent and no more than ten percent of the green points lie outside the 0.1% AEP flood extent.

The maximum horizontal distance between the 0.5% AEP flood extent and those survey points shown outside of this flood extent but below the 0.5% flood level was found to be approximately 21.3m. The maximum horizontal distance between the 0.1% AEP flood extent and those survey points shown outside of this flood extent but below the 0.1% flood level was shown to be approximately 7.8m.

4.11 Portmarnock (Dublin Survey Points)

The results of the flood extent accuracy assessment for Portmarnock are shown in Figures 35 and 36. These Figures show the flood extents produced from the DTM for the 0.5% and 0.1% AEP and the predicted flood levels associated with these events i.e. 3.4m O.D. Malin for 0.1% AEP and 3.17m O.D. Malin for 0.5% AEP in the selected area. Figure 35 highlights those survey points in yellow which should fall within the 0.5% AEP flood extent and Figure 36 shows those survey points in green which should fall within the 0.1% AEP flood extent. In the sample area selected it can be seen that none of the yellow points lie outside the 0.5% AEP flood extent and none of the green points lie outside the 0.1% AEP flood extent.

The maximum horizontal distance between the 0.5% AEP flood extent and those survey points shown outside of this flood extent but below the 0.5% flood level was therefore 0m. The maximum horizontal distance between the 0.1% AEP flood extent and those survey points shown outside of this flood extent but below the 0.1% flood level was also shown to be 0m.

4.12 Sydney Parade (Dublin Survey Points)

The results of the flood extent accuracy assessment for Sydney Parade are shown in Figures 37 and 38. These Figures show the flood extents produced from the DTM for the 0.5% and 0.1% AEP and the predicted flood levels associated with these events i.e. 3.40m O.D. Malin for 0.1% AEP and 3.16m O.D. Malin for 0.5% AEP in the selected area. Figure 37 highlights those survey points in yellow which should fall within the 0.5% AEP flood extent and Figure 38 shows those survey points in green which should fall within the 0.1% AEP flood extent. In the sample area selected it can be seen that five of the yellow points lie outside the 0.5% AEP flood extent and one of the green points lies outside the 0.1% AEP flood extent.

The maximum horizontal distance between the 0.5% AEP flood extent and those survey points shown outside of this flood extent but below the 0.5% flood level was found to be approximately 3.0m. The maximum horizontal distance between the 0.1% AEP flood extent and those survey points shown outside of this flood extent but below the 0.1% flood level was shown to be approximately 0.5 m.

LOCATION	0.5% AEP	0.1% AEP
Cruisetown (Port Oriel Survey Points)	0.8m	0.1m
Malahide Area 1	2.1m	0.4m
Donabate (Malahide Survey Points)	2.3m	2.6m
Drogheda Area 1	0.6m	0m
Drogheda Area 2	0m	0m
Dundalk Area 1 (2008 Survey Points)	0.5m	0m
Dundalk Area 2 (2006 and 2008 Survey Points)	0.4m	1.8m
Dundalk Area 3 (2008 Survey Points)	6.8m	7.4m
Ballsbridge (Dublin Survey Points)	0.6m	1.8m
Clontarf (Dublin Survey Points)	21.3m	7.8m
Portmarnock (Dublin Survey Points)	0m	0m
Sydney Parade (Dublin Survey Points)	3.0m	0.5m

Table 10: Horizontal Accuracy of Flood Extents

It can be seen from Table 10 that all the areas have high horizontal accuracy of between 0m and 21.3m for both 0.5% AEP and 0.1% AEP. The Clontarf area has the lowest horizontal accuracy of 21.3m and 7.8m for 0.5% AEP and 0.1% AEP respectively while two of the areas (Drogheda Area 2 and Portmarnock) have values of 0m for both 0.5% AEP and 0.1% AEP.

5.0 Conclusion

Based on the additional ground survey carried out in the six urban areas as part of this study it can be concluded that the DTM is of the accuracy expected and provides in general a very good basis for the generation of flood extents.

For all six locations, mean height difference and standard deviation values range between -0.04m to 0.104m and 0.063m to 0.239m respectively. Maximum height differences range between 0.140m to 3.515m and minimum height differences range between -1.558m to -0.175m. The RMSE of height difference values is in general low, ranging from 0.065m at Balbriggan to 0.243m at Dundalk (2006). The results also indicate that at the 95% confidence limit, the accuracy of the DTM varies from between -0.376m at Dundalk (2006) to 0.469m at Dundalk (2006). At the 99% confidence limit the accuracy of the DTM varies from between -0.504m for Dundalk (2006) to 1.530m at Port Oriel.

Combining all locations, at the 95% confidence limit the accuracy of the DTM varies between -0.187m to 0.255m and between -0.350m to 0.522m at the 99% confidence limit. The overall RMSE is 0.144m.

Horizontal accuracy of the flood extents for 0.5% AEP ranged from as accurate as 0 metres at Drogheda Area 2 and Portmarnock to 21.3m at Clontarf, showing a high level of horizontal accuracy across the flood extent. For 0.1% AEP, horizontal accuracy ranged from 0 metres at Dundalk Area 1, Drogheda Area 1 and Area 2, and Portmarnock to 7.8 metres at Clontarf. For both 0.5% and 0.1% AEP's, all the areas had high horizontal accuracy with the exception of Clontarf which had the lowest accuracy for both.

APPENDIX 6A: Figures 8 to 14

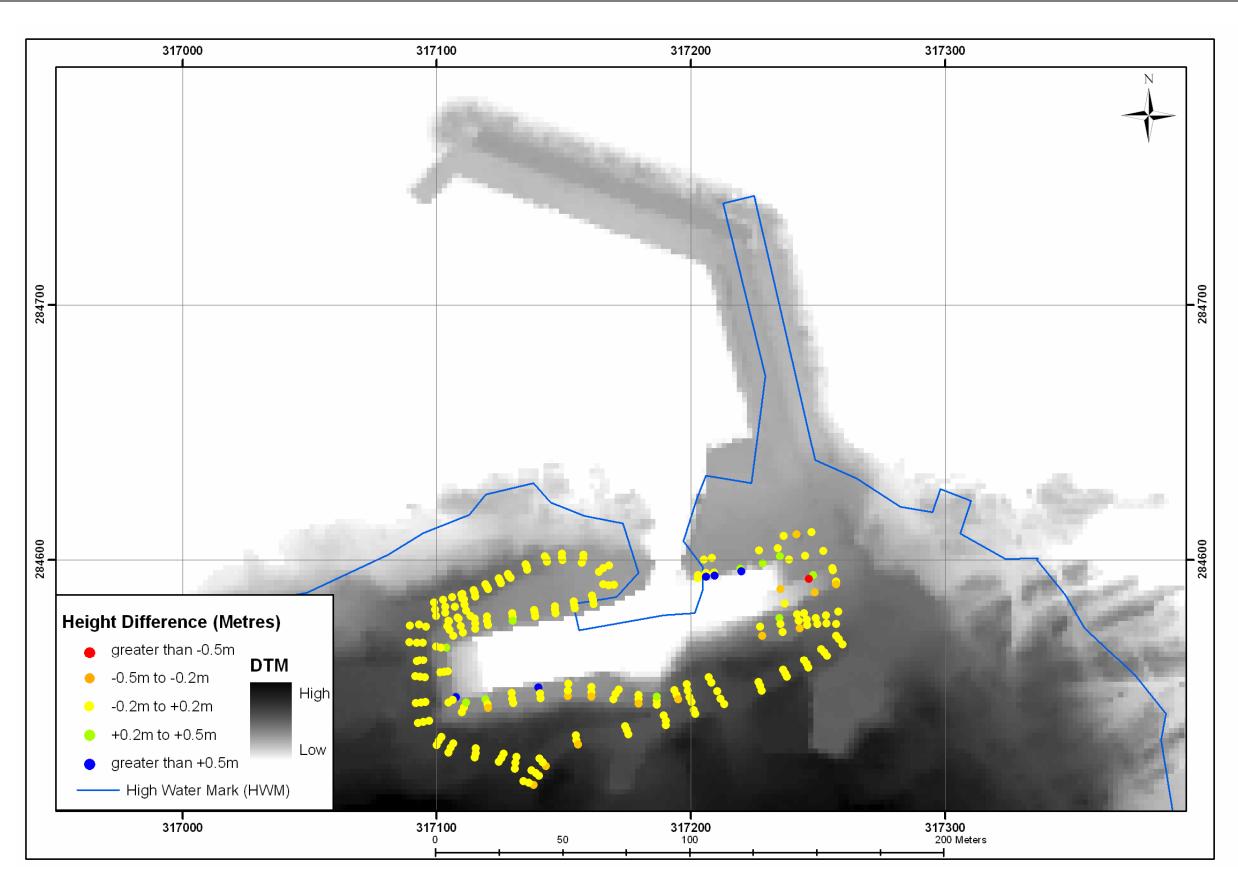


Figure 8: Comparison of DTM and QC Survey Data – Port Oriel, Co. Louth

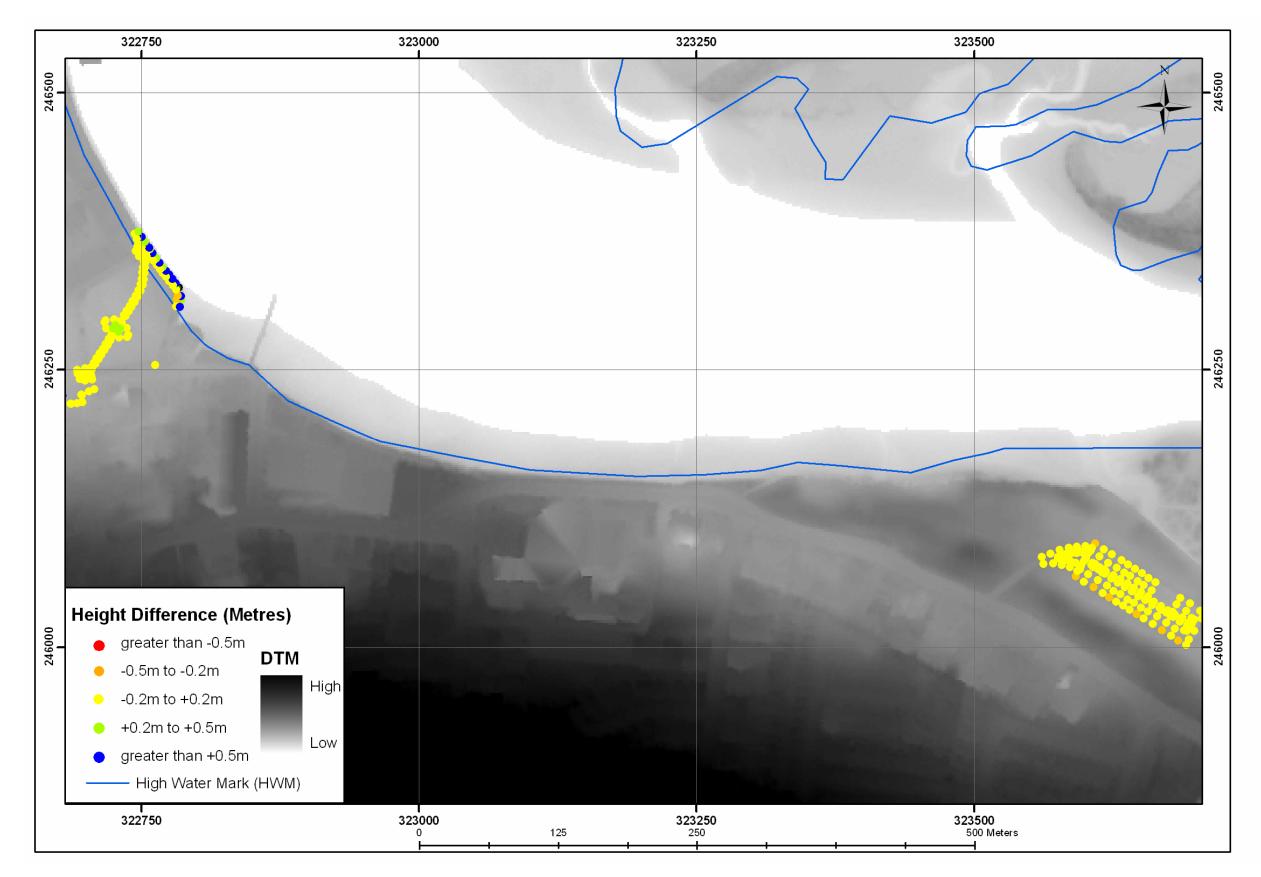


Figure 9: Comparison of DTM and QC Survey Data – Malahide, Co. Dublin

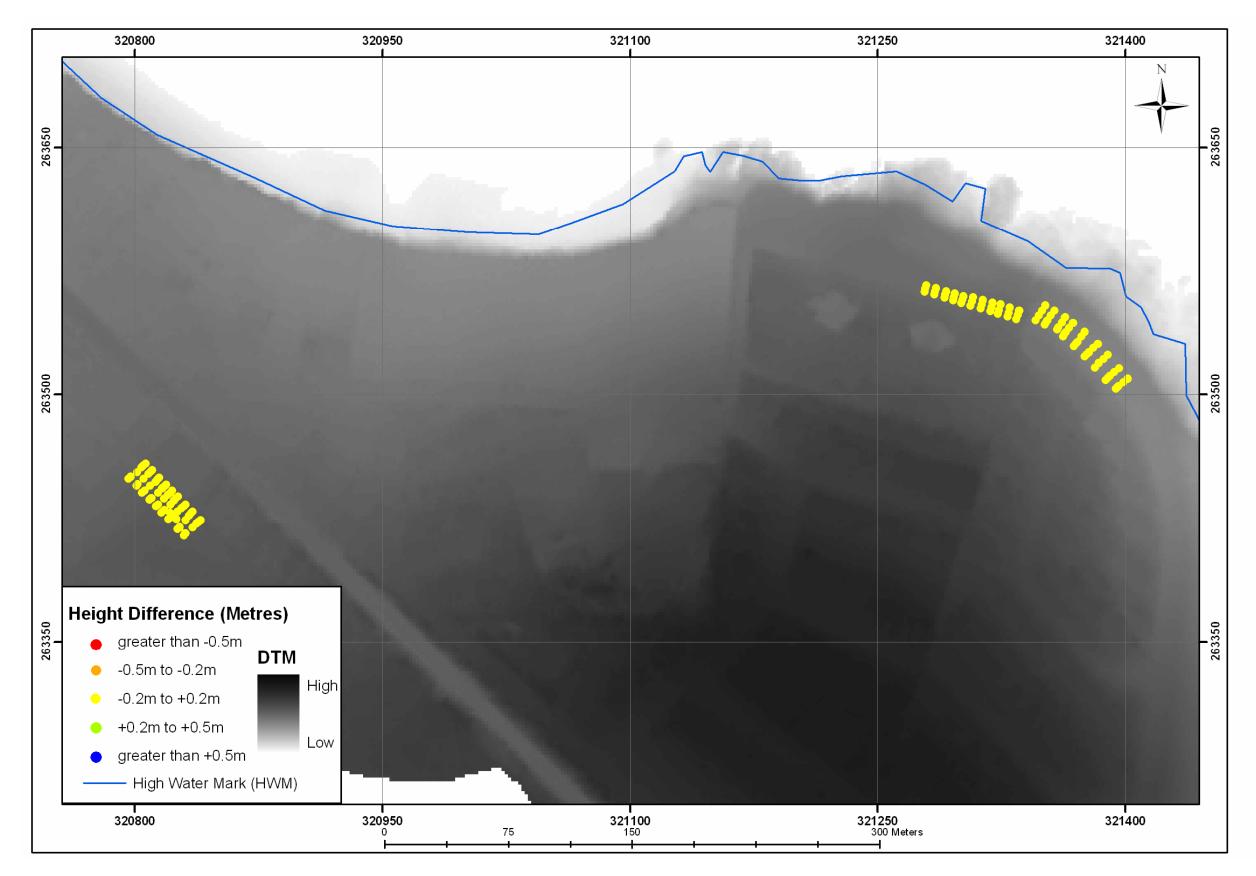


Figure 10: Comparison of DTM and QC Survey Data – Balbriggan, Co. Dublin

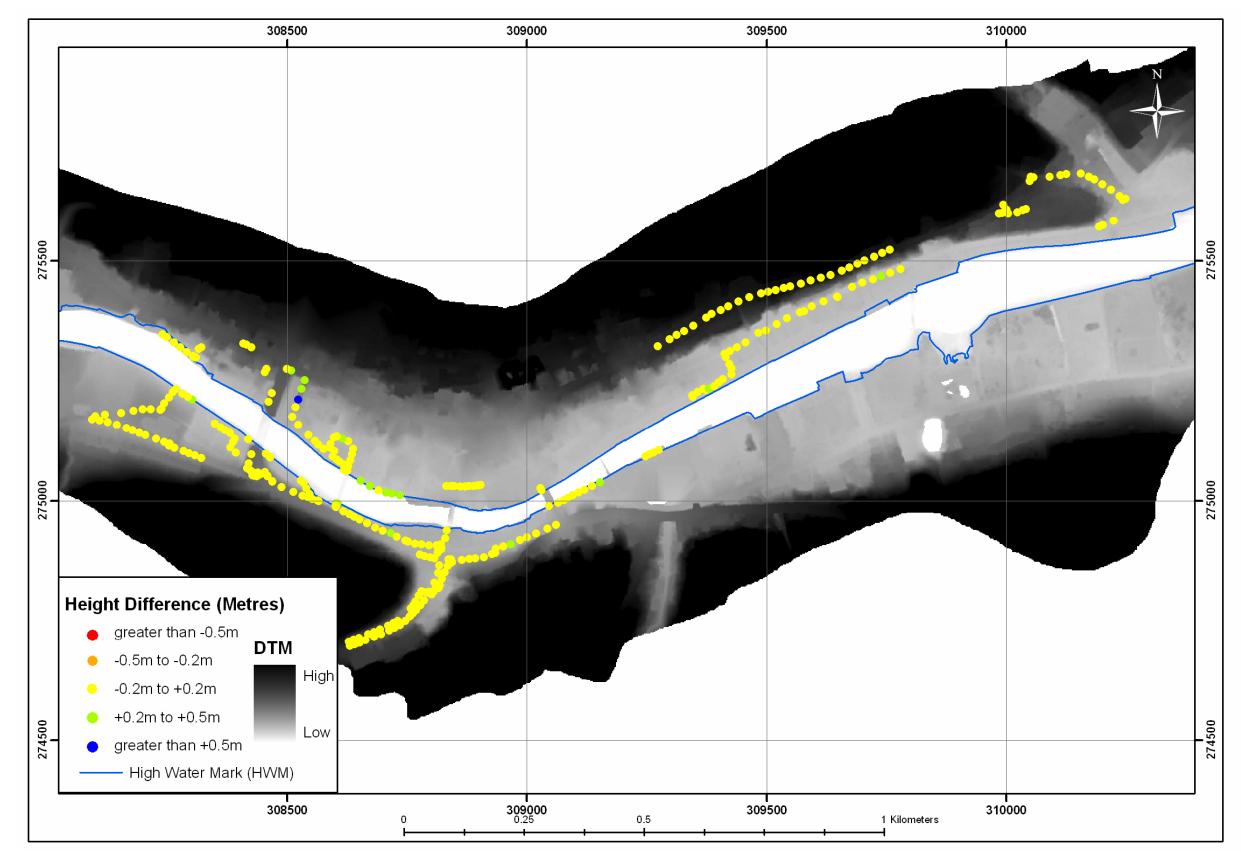


Figure 11: Comparison of DTM and QC Survey Data – Drogheda

Irish Coastal Protection Strategy Study Phase 3 – North East Coast

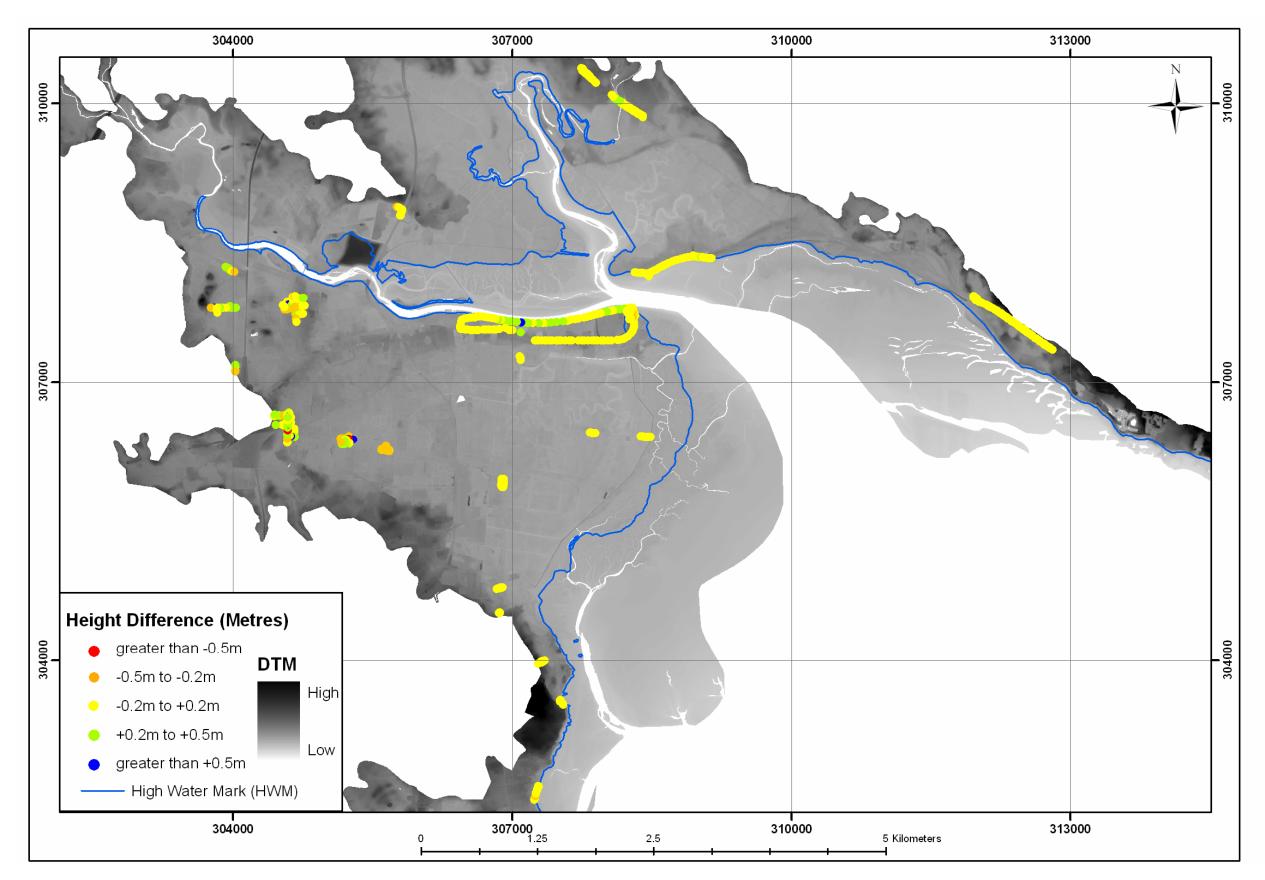


Figure 12: Comparison of DTM and QC Survey Data – Dundalk (2006)

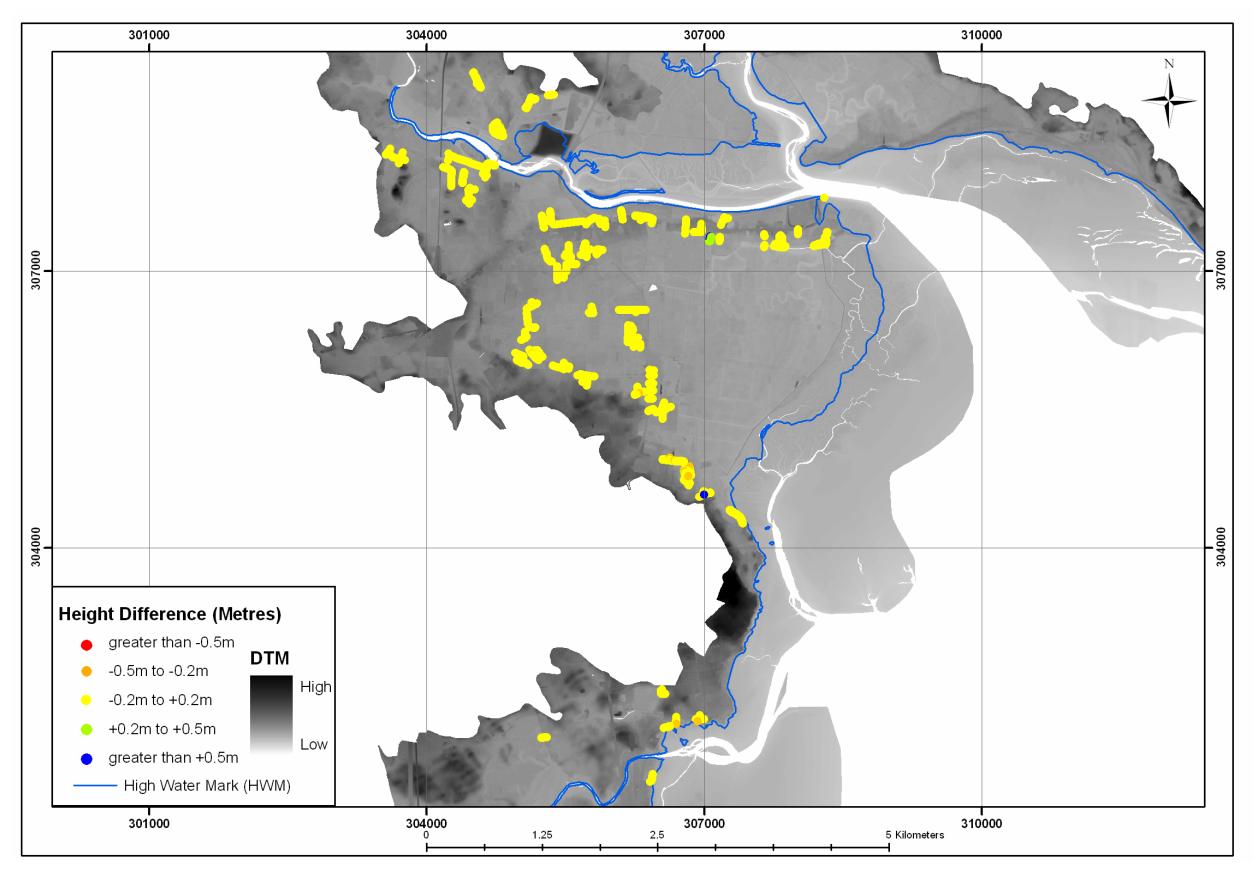


Figure 13: Comparison of DTM and QC Survey Data – Dundalk (2008)

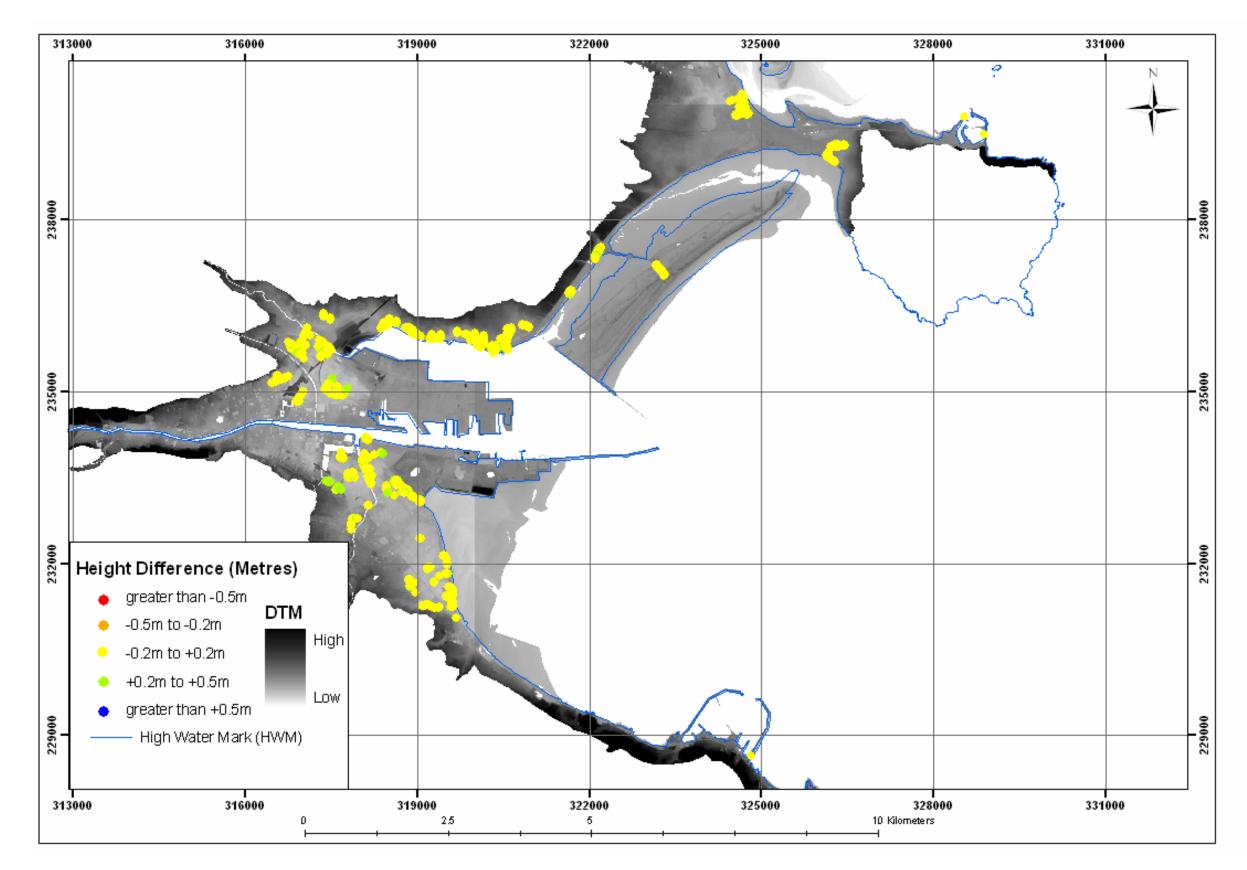


Figure 14: Comparison of DTM and QC Survey Data – Dublin

APPENDIX 6B : Figures 15 to 38

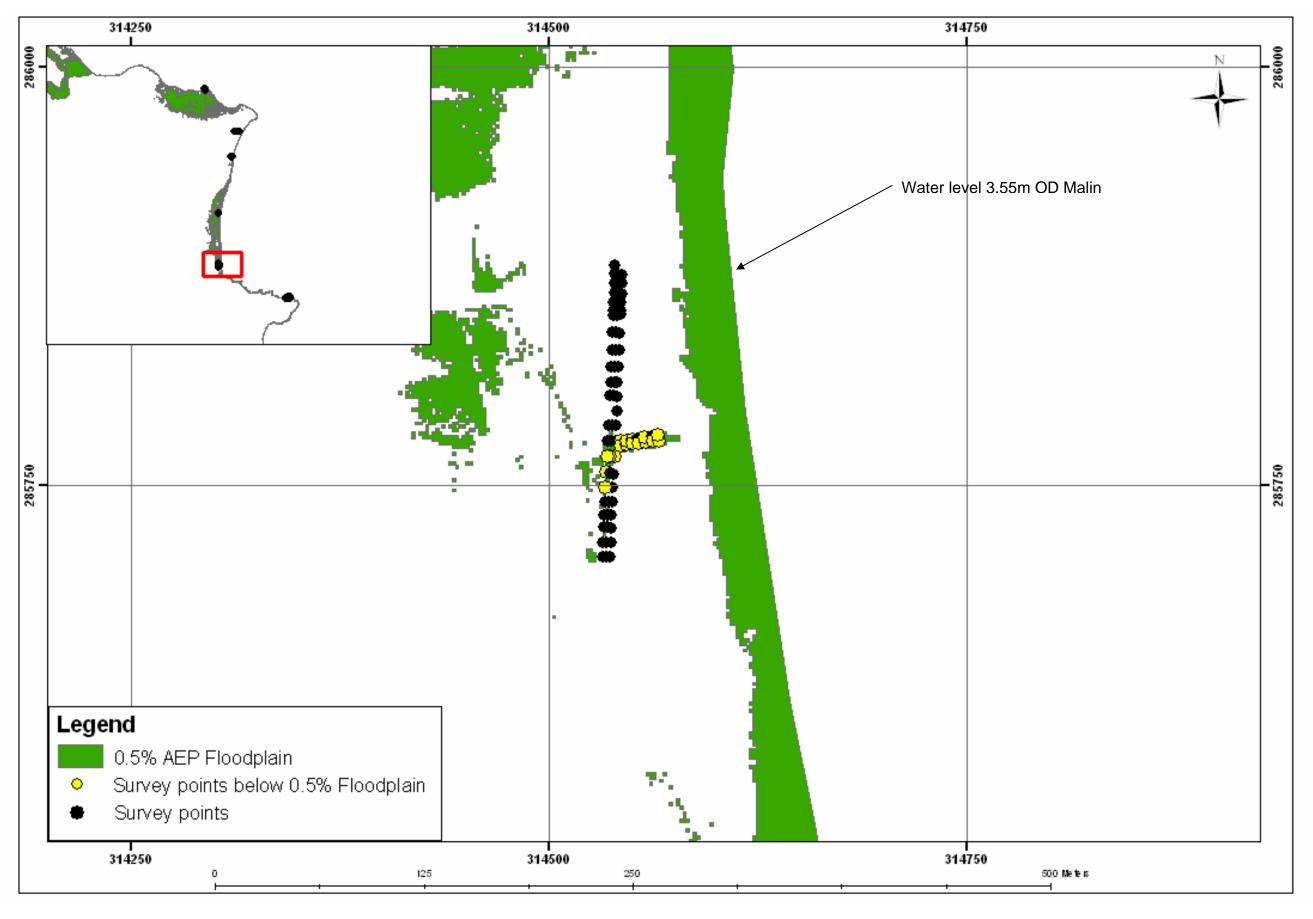


Figure 15: Comparison of 0.5% AEP Floodplain and Survey Data – Cruisetown (Port Oriel Survey Points)

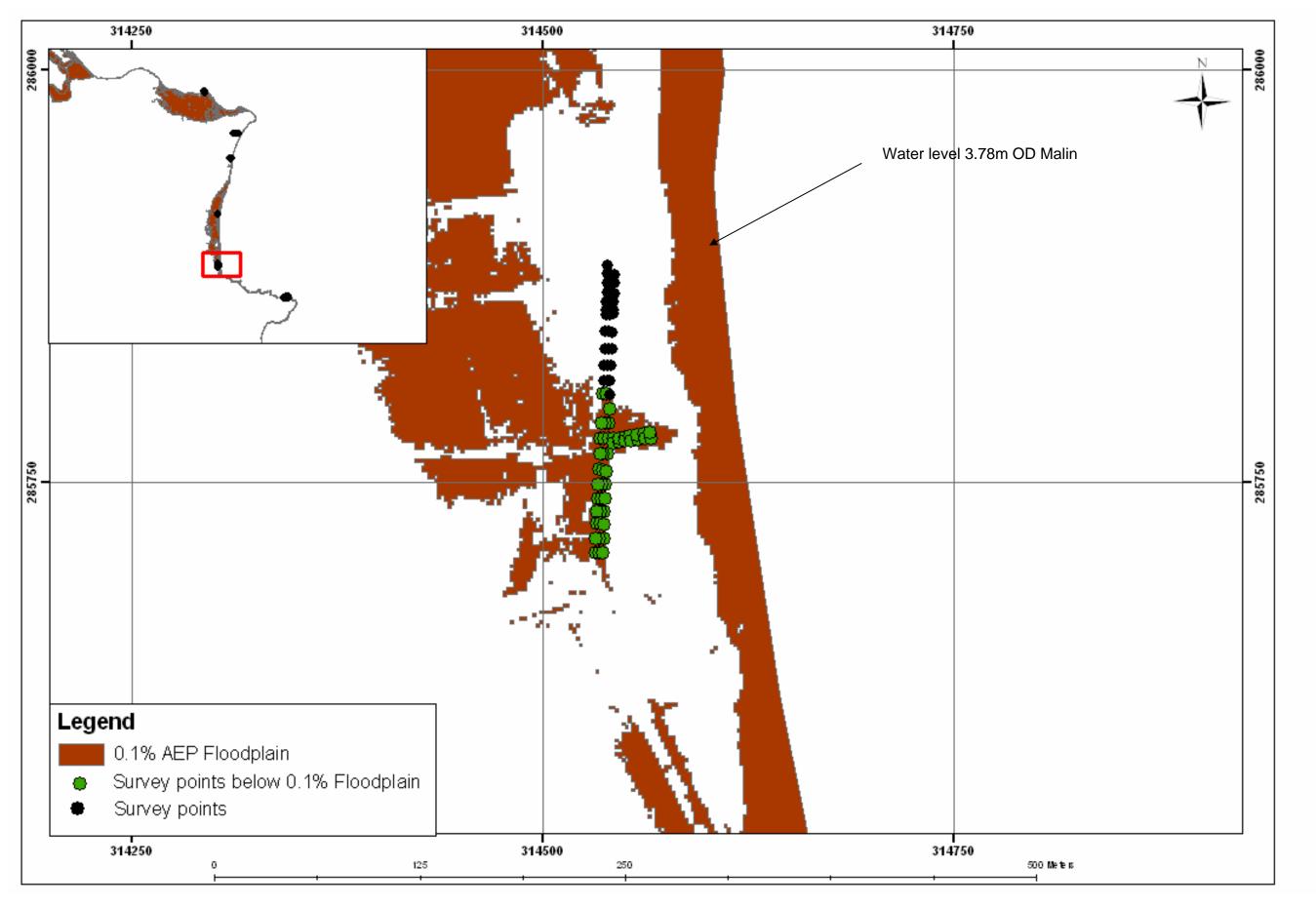


Figure 16: Comparison of 0.1% AEP Floodplain and Survey Data – Cruisetown (Port Oriel Survey Points)

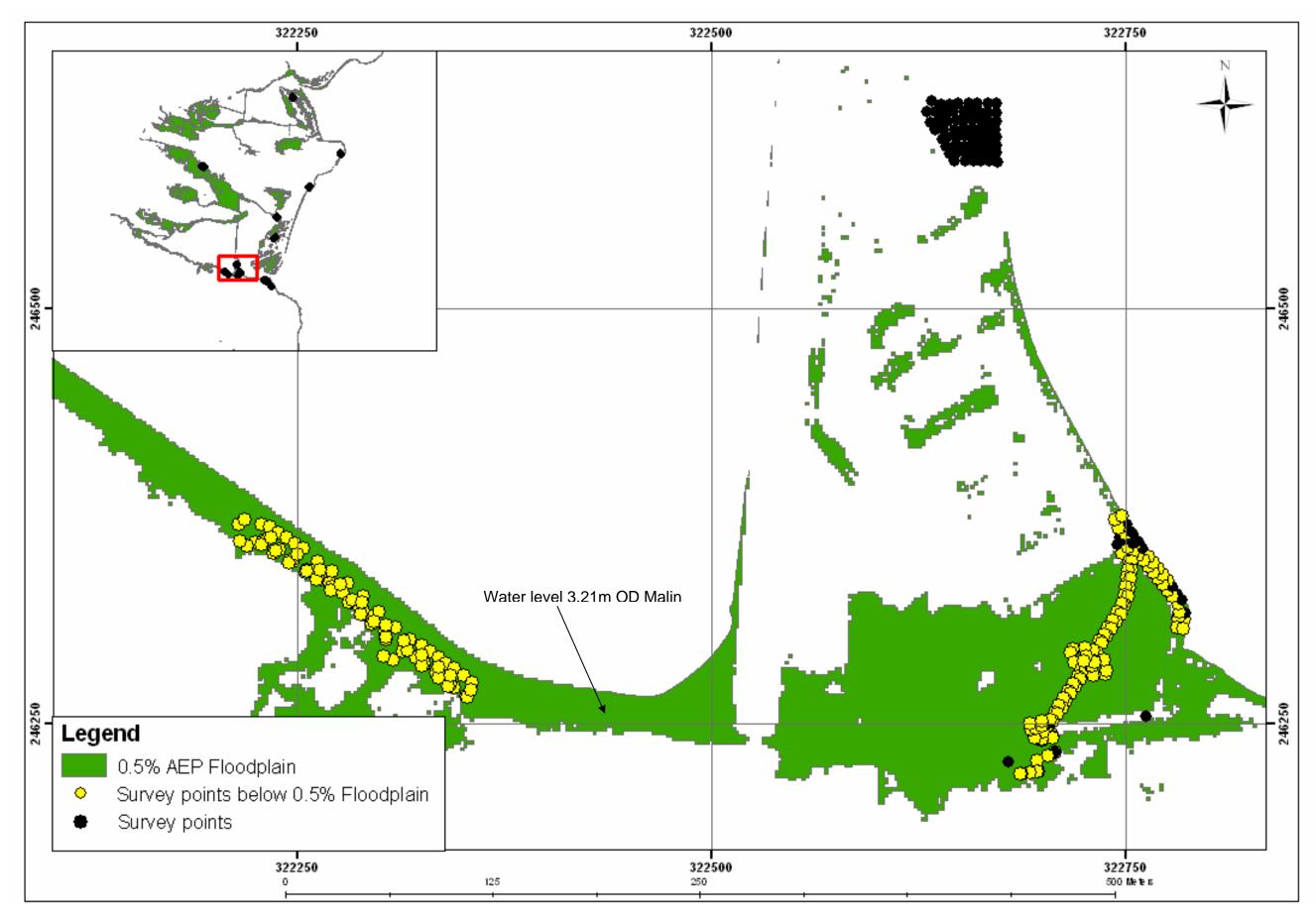


Figure 17: Comparison of 0.5% AEP Floodplain and Survey Data – Malahide Area 1

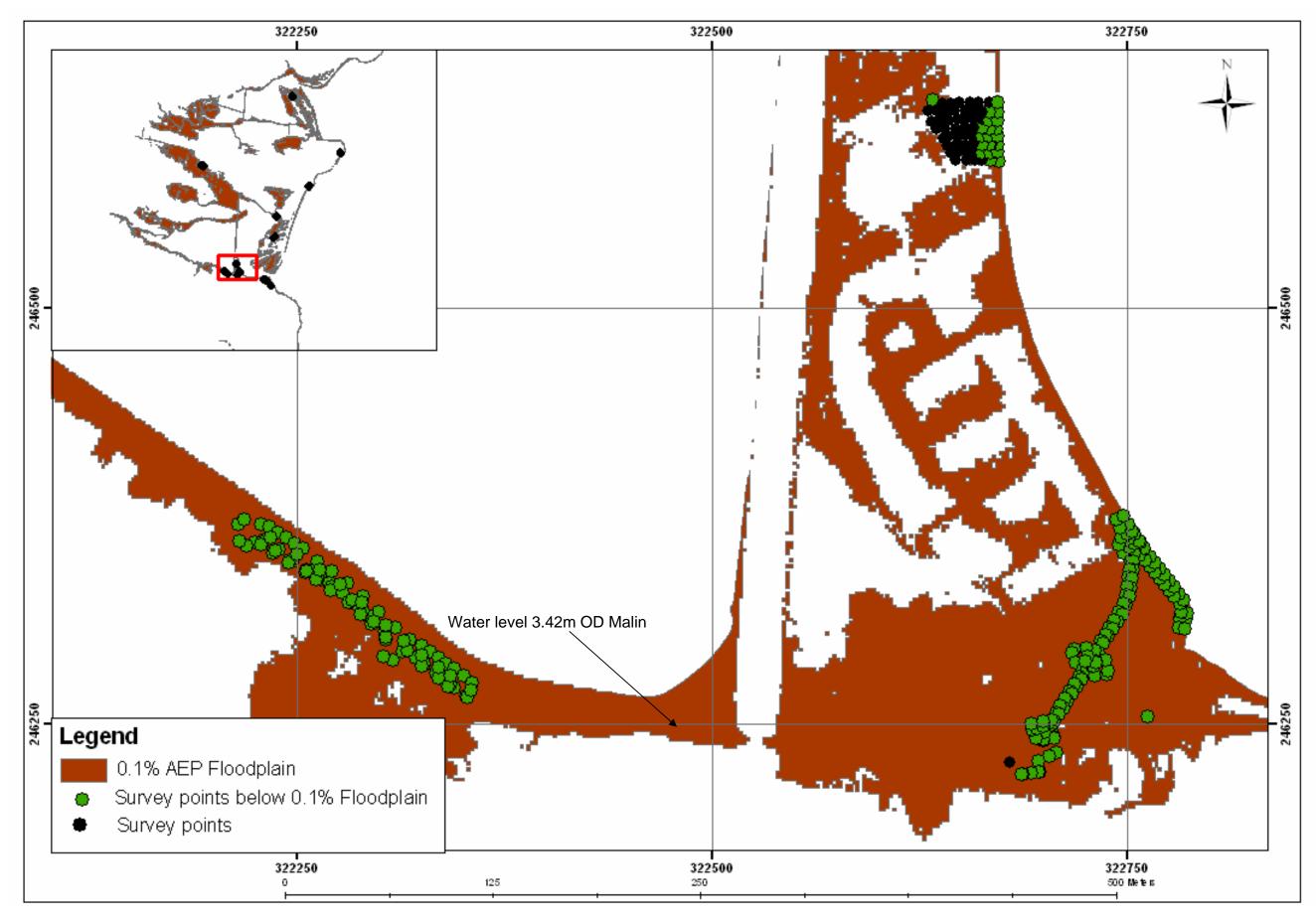


Figure 18: Comparison of 0.1% AEP Floodplain and Survey Data – Malahide Area 1

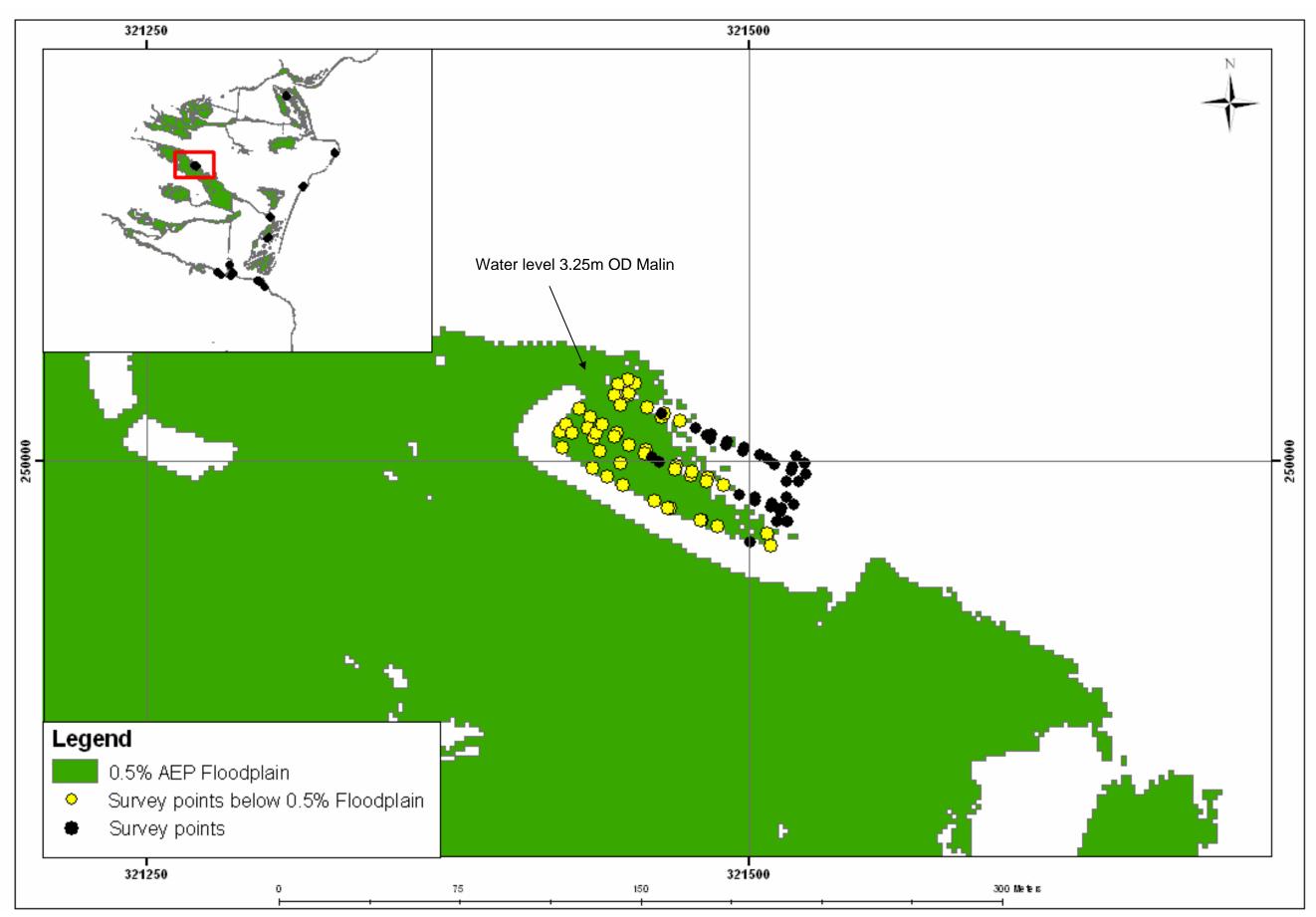


Figure 19: Comparison of 0.5% AEP Floodplain and Survey Data – Donabate Area (Malahide Survey Points)

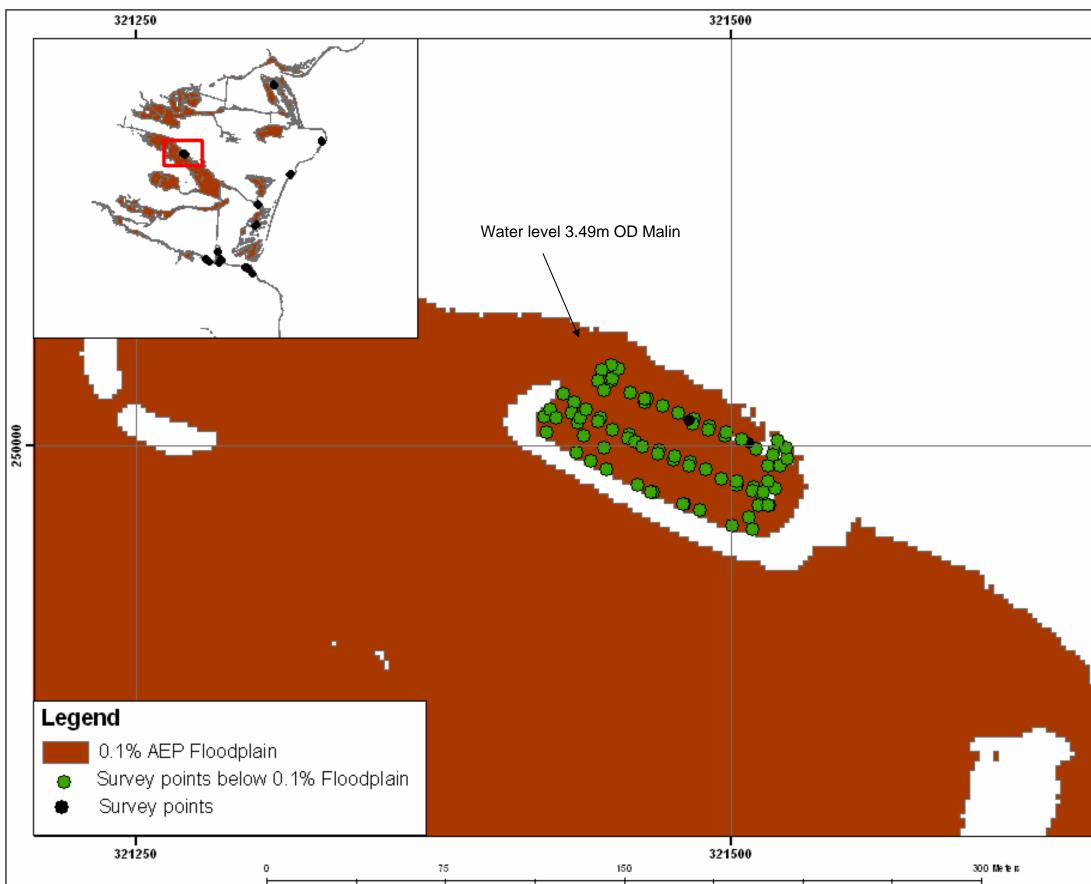


Figure 20: Comparison of 0.1% AEP Floodplain and Survey Data – Donabate Area (Malahide Survey Points)

N	
	250000

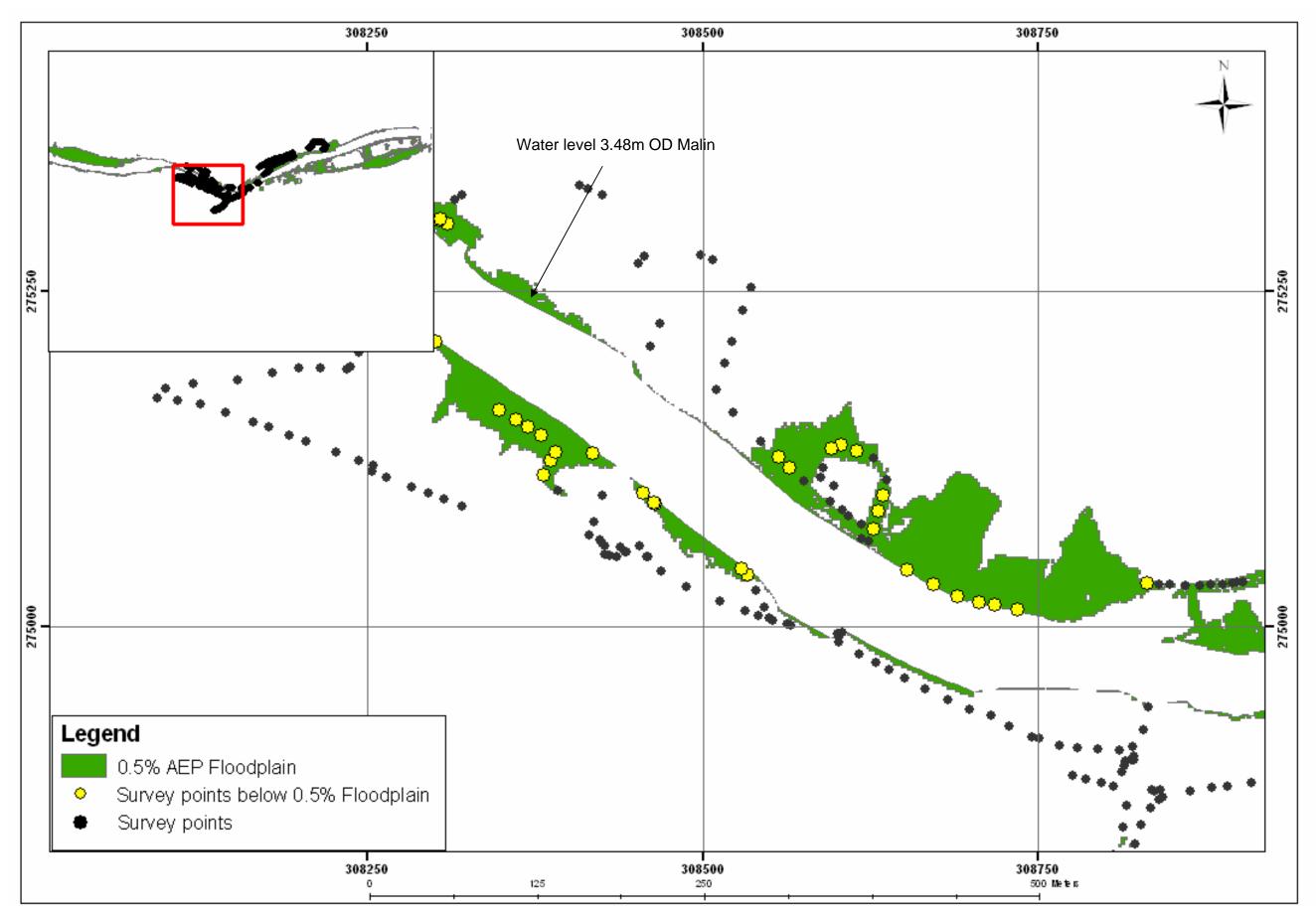


Figure 21: Comparison of 0.5% AEP Floodplain and Survey Data – Drogheda Area 1

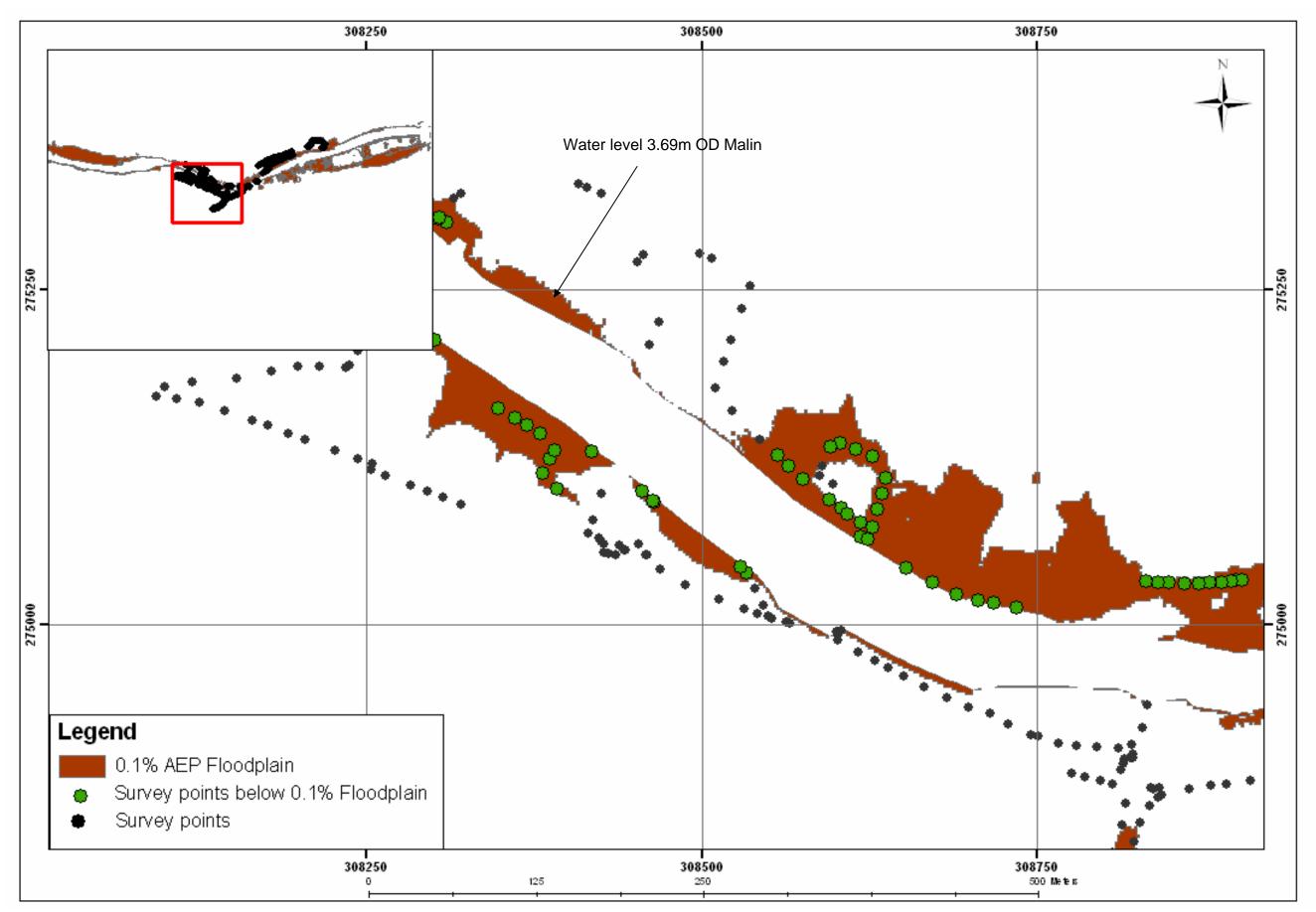


Figure 22: Comparison of 0.1% AEP Floodplain and Survey Data – Drogheda Area 1

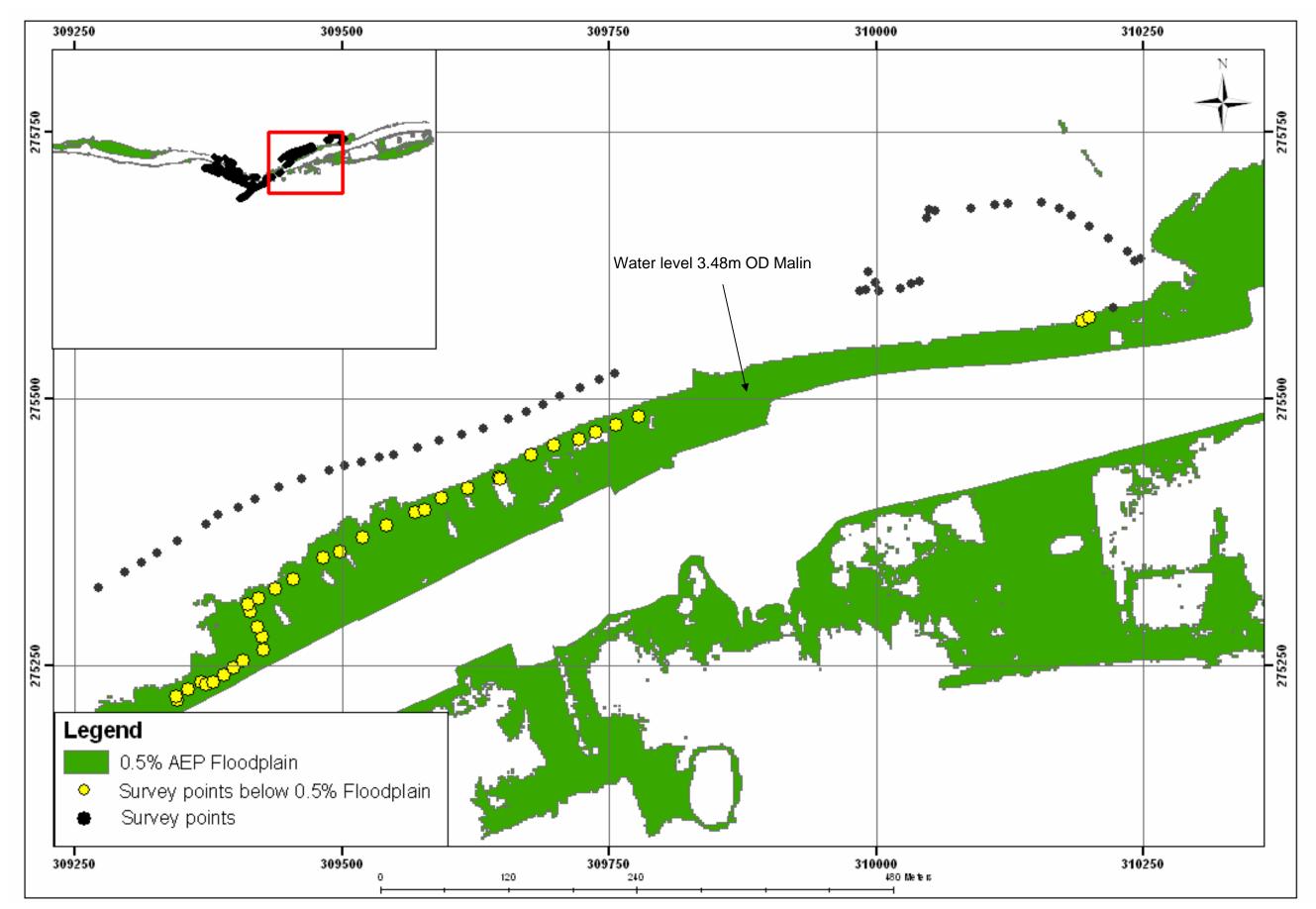


Figure 23: Comparison of 0.5% AEP Floodplain and Survey Data – Drogheda Area 2

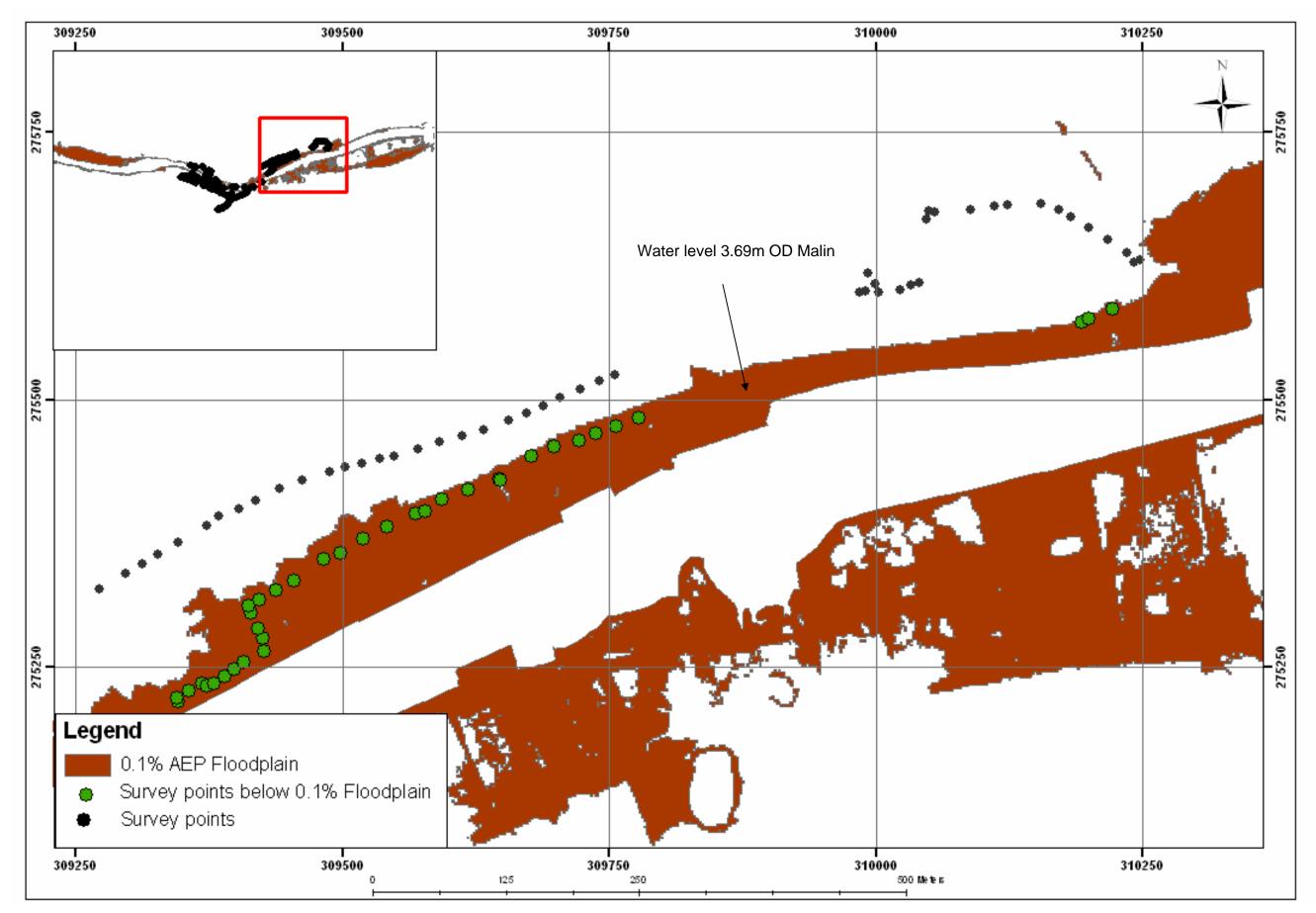


Figure 24: Comparison of 0.1% AEP Floodplain and Survey Data – Drogheda Area 2

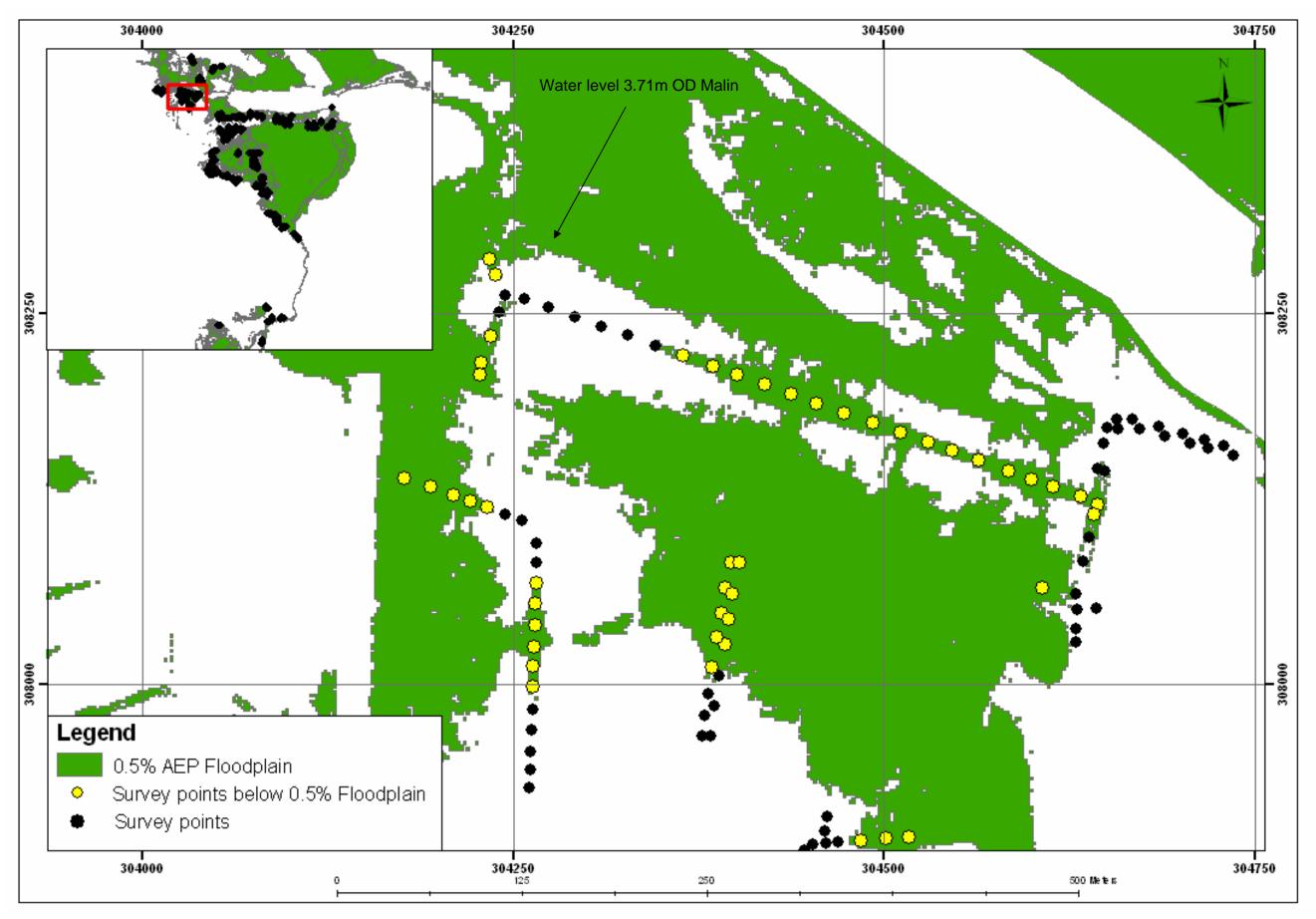


Figure 25: Comparison of 0.5% AEP Floodplain and Survey Data – Dundalk Area 1 (2008 Survey Points)

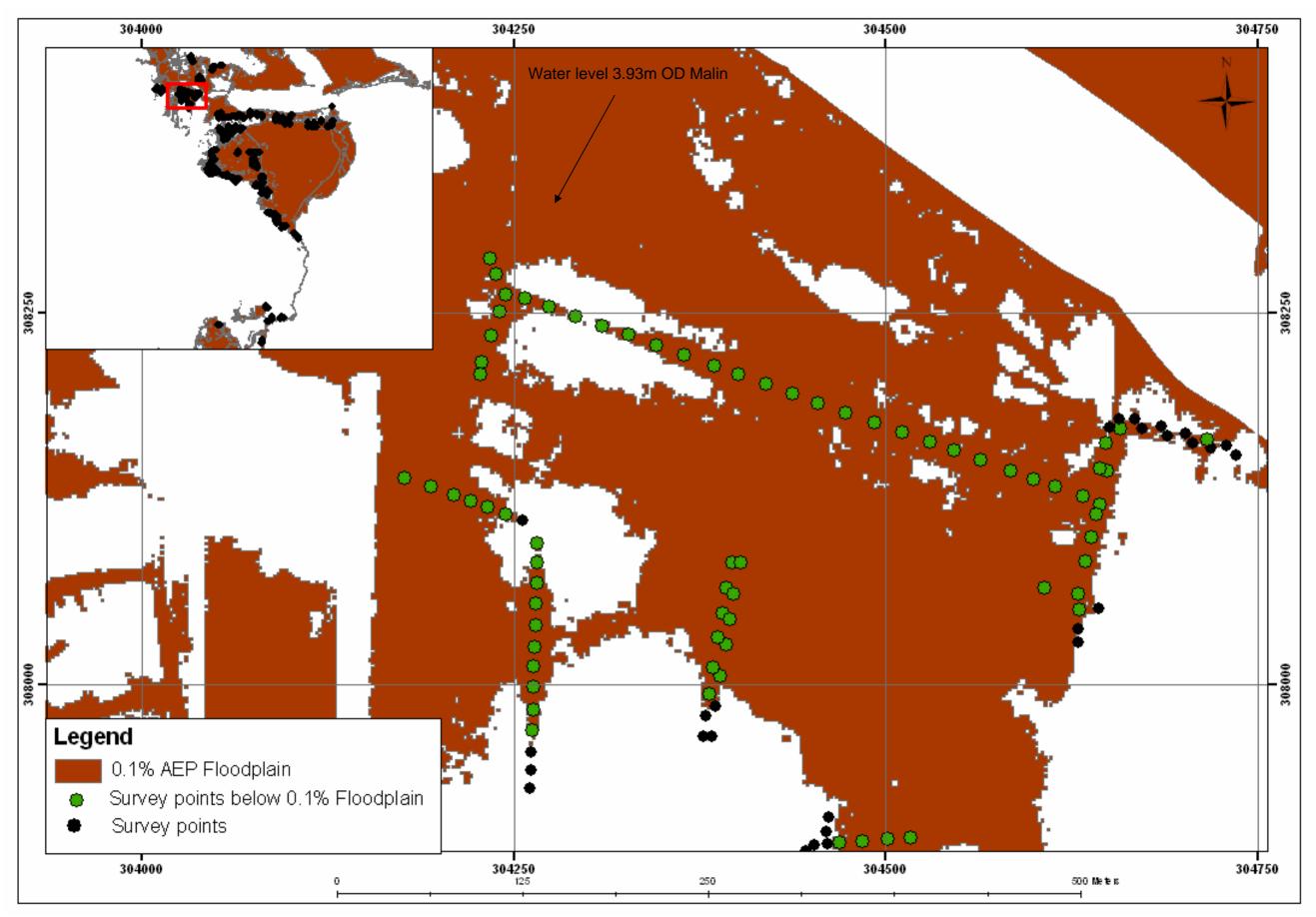


Figure 26: Comparison of 0.1% AEP Floodplain and Survey Data – Dundalk Area 1 (2008 Survey Points)

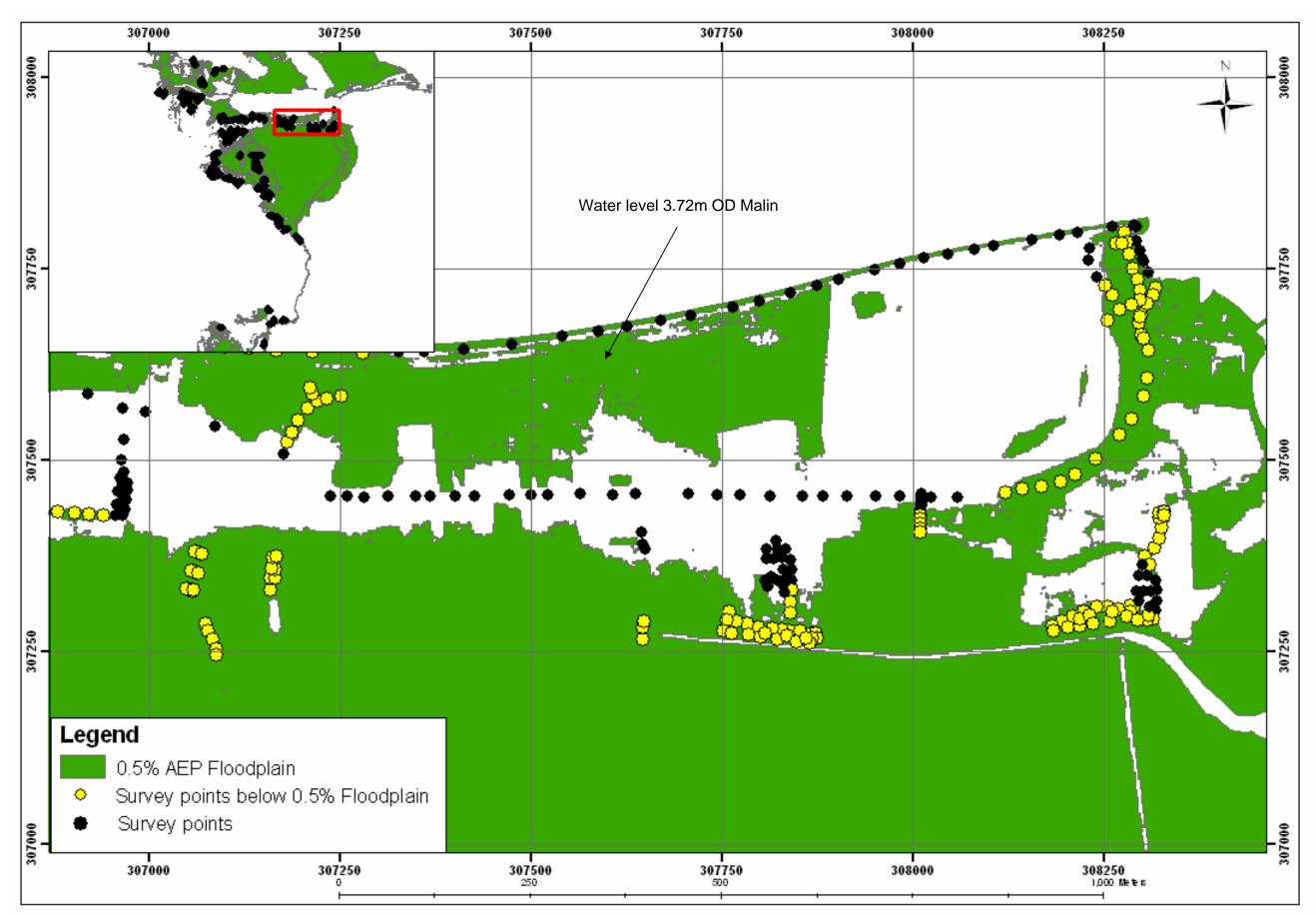


Figure 27: Comparison of 0.5% AEP Floodplain and Survey Data – Dundalk Area 2 (2006 and 2008 Survey Points)

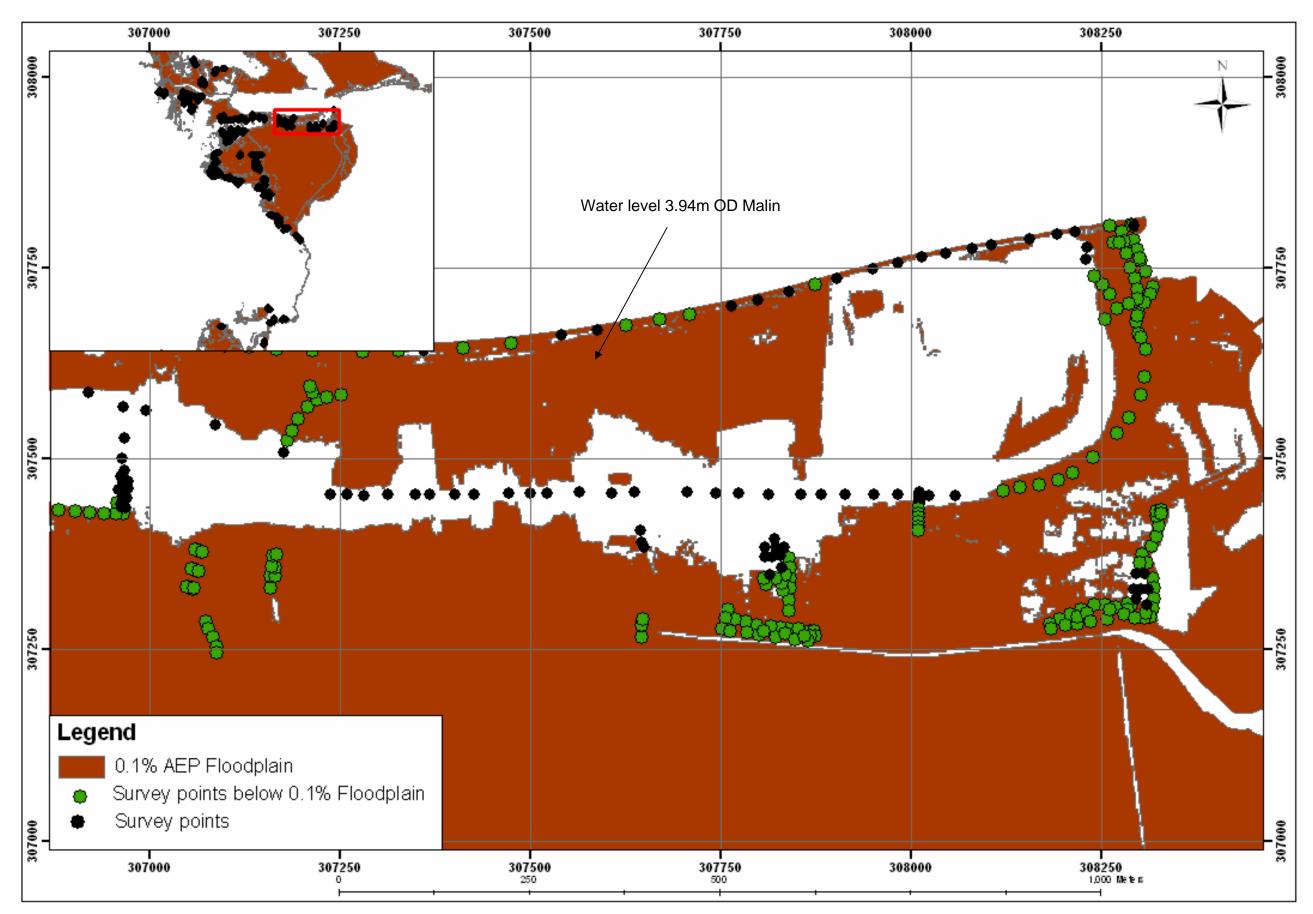


Figure 28: Comparison of 0.1% AEP Floodplain and Survey Data – Dundalk Area 2 (2006 and 2008 Survey Points)

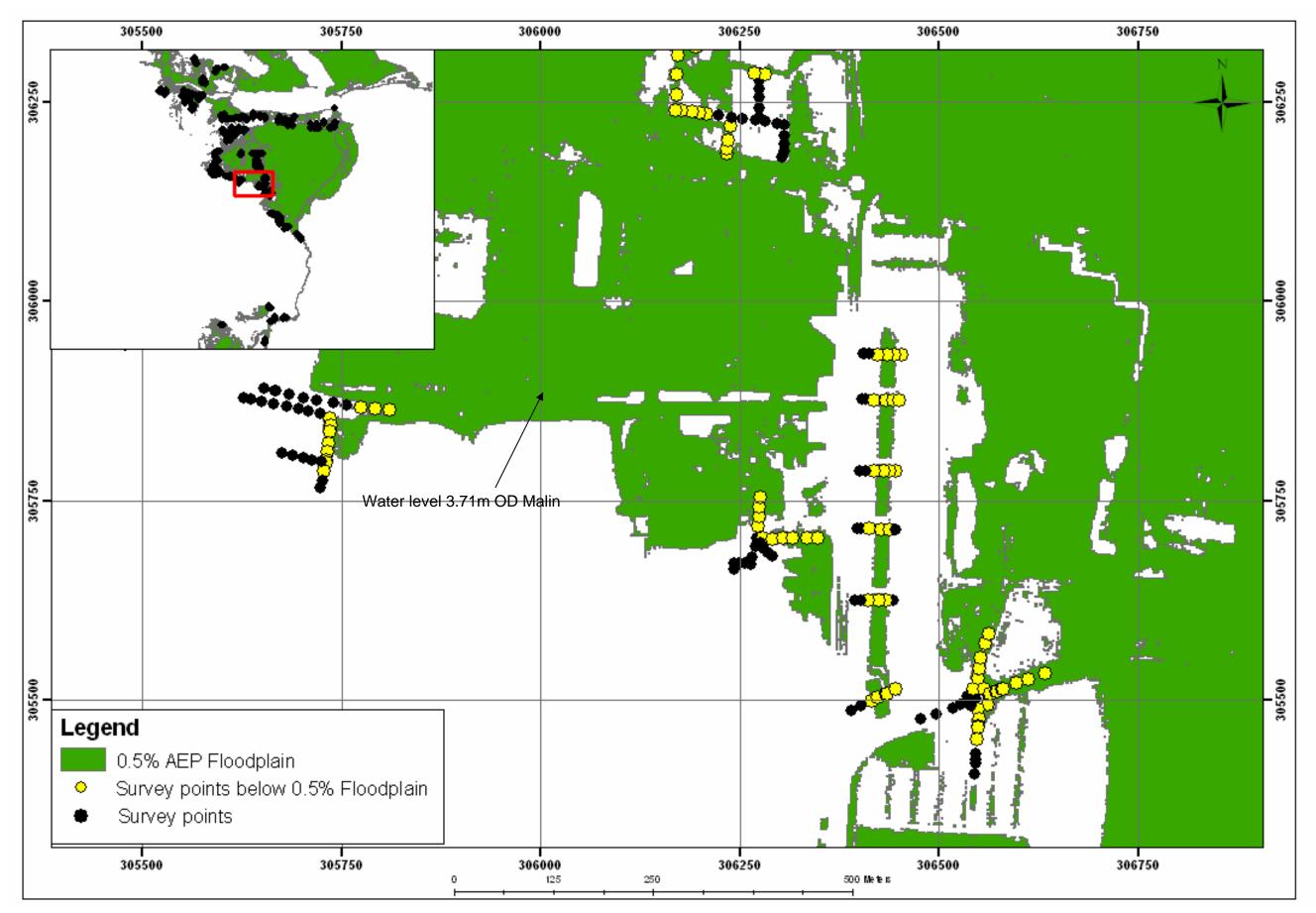


Figure 29: Comparison of 0.5% AEP Floodplain and Survey Data – Dundalk Area 3 (2008 Survey Points)

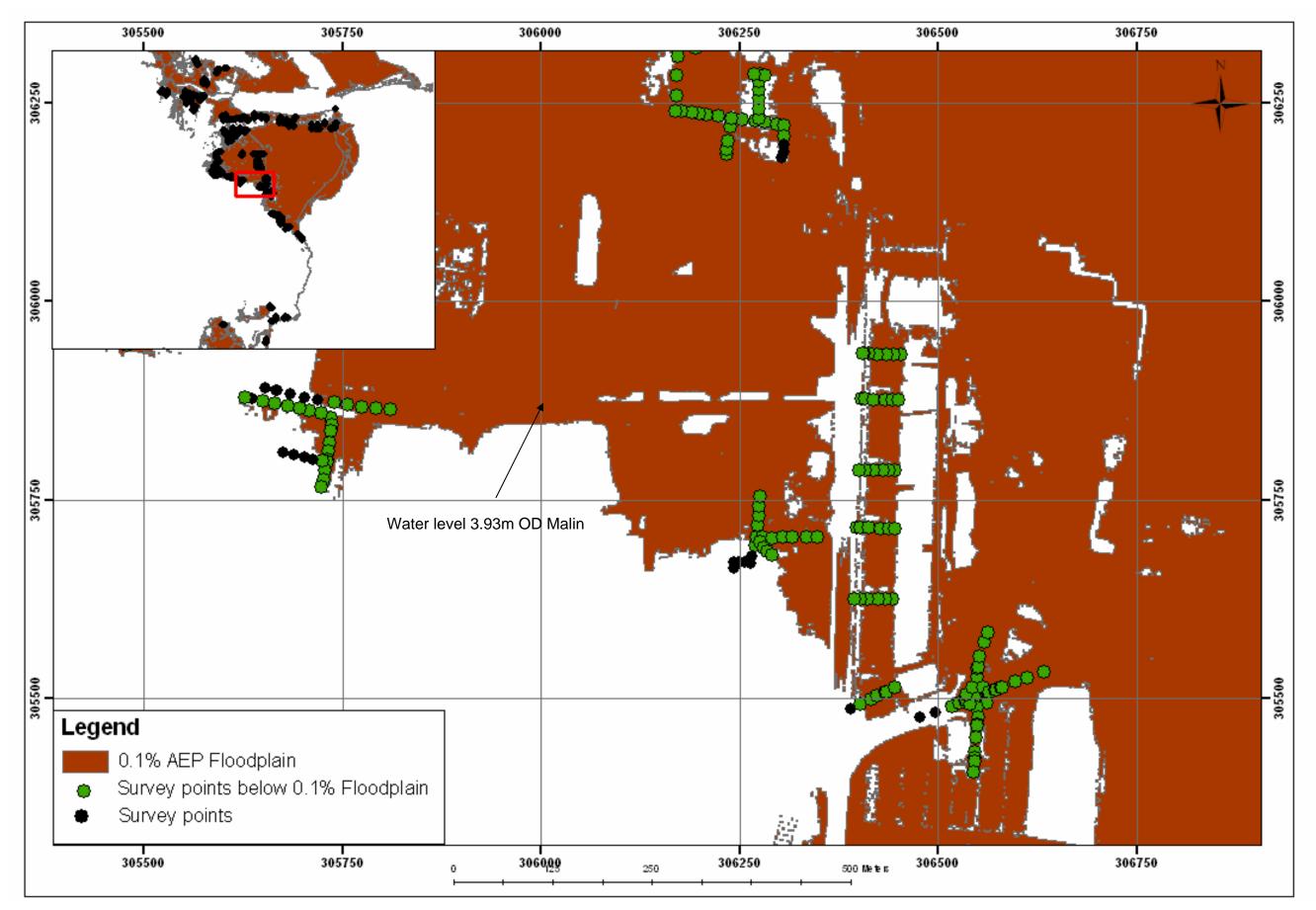


Figure 30: Comparison of 0.1% AEP Floodplain and Survey Data – Dundalk Area 3 (2008 Survey Points)

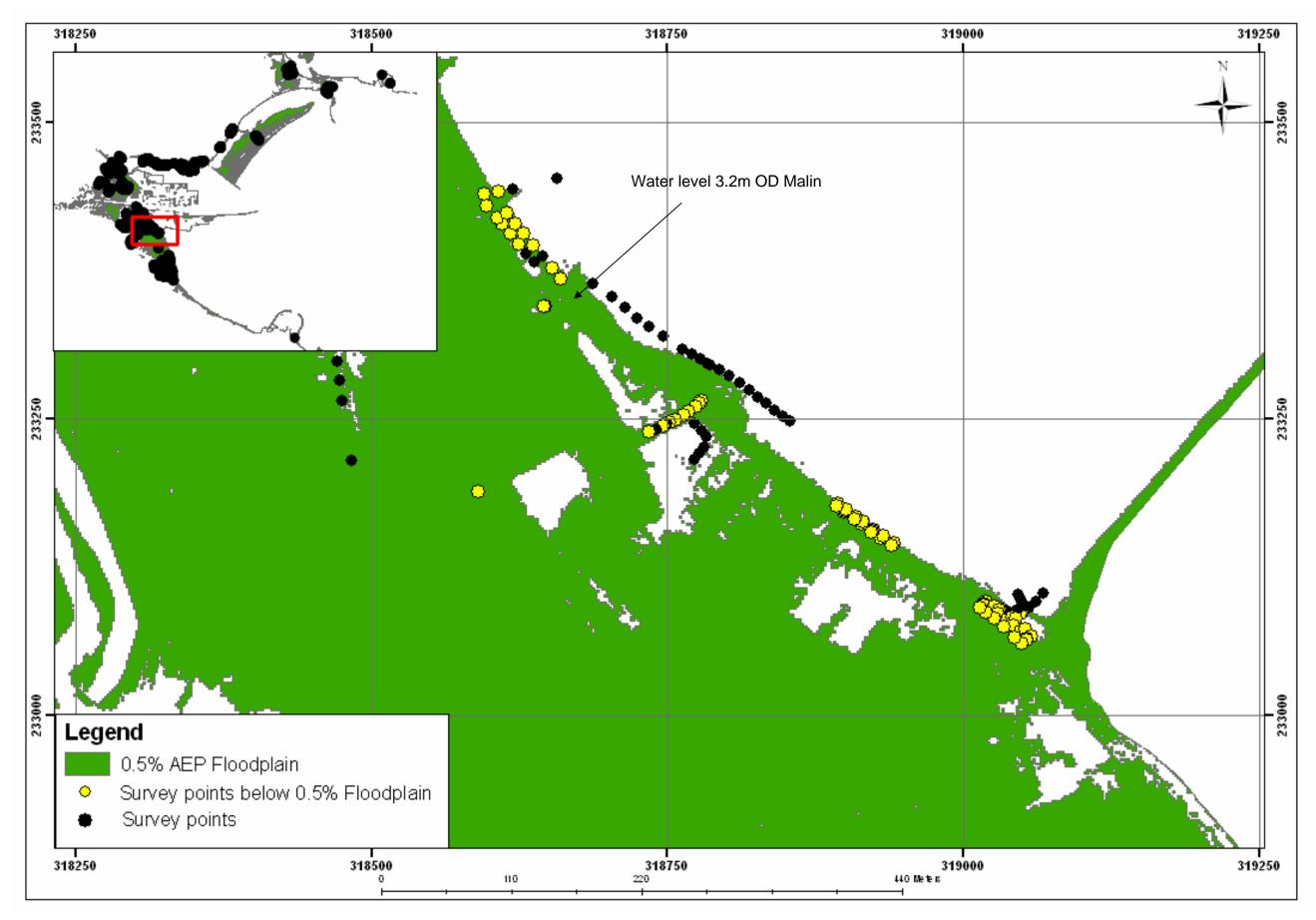


Figure 31: Comparison of 0.5% AEP Floodplain and Survey Data – Ballsbridge (Dublin Survey Points)

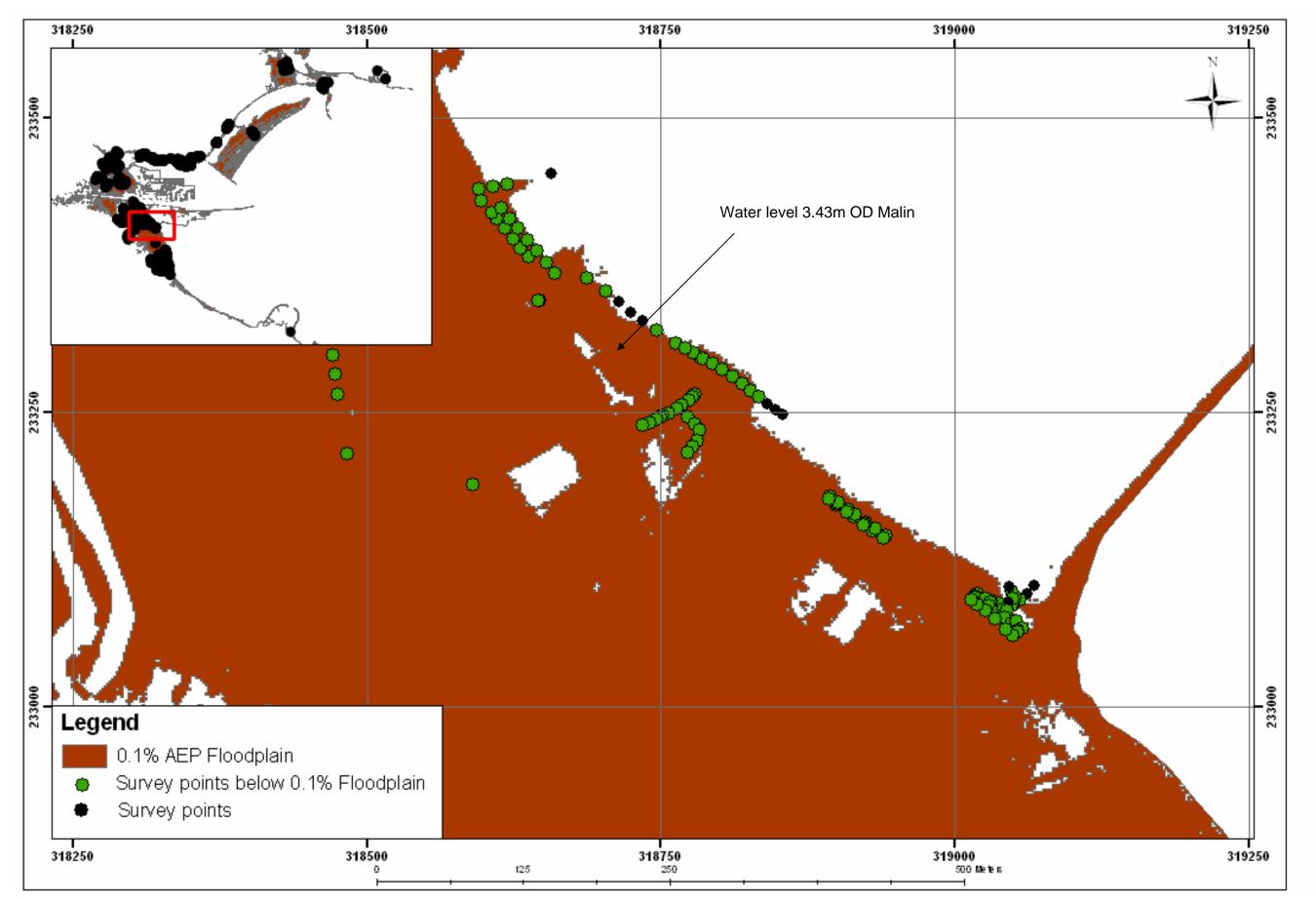


Figure 32: Comparison of 0.1% AEP Floodplain and Survey Data – Ballsbridge (Dublin Survey Points)

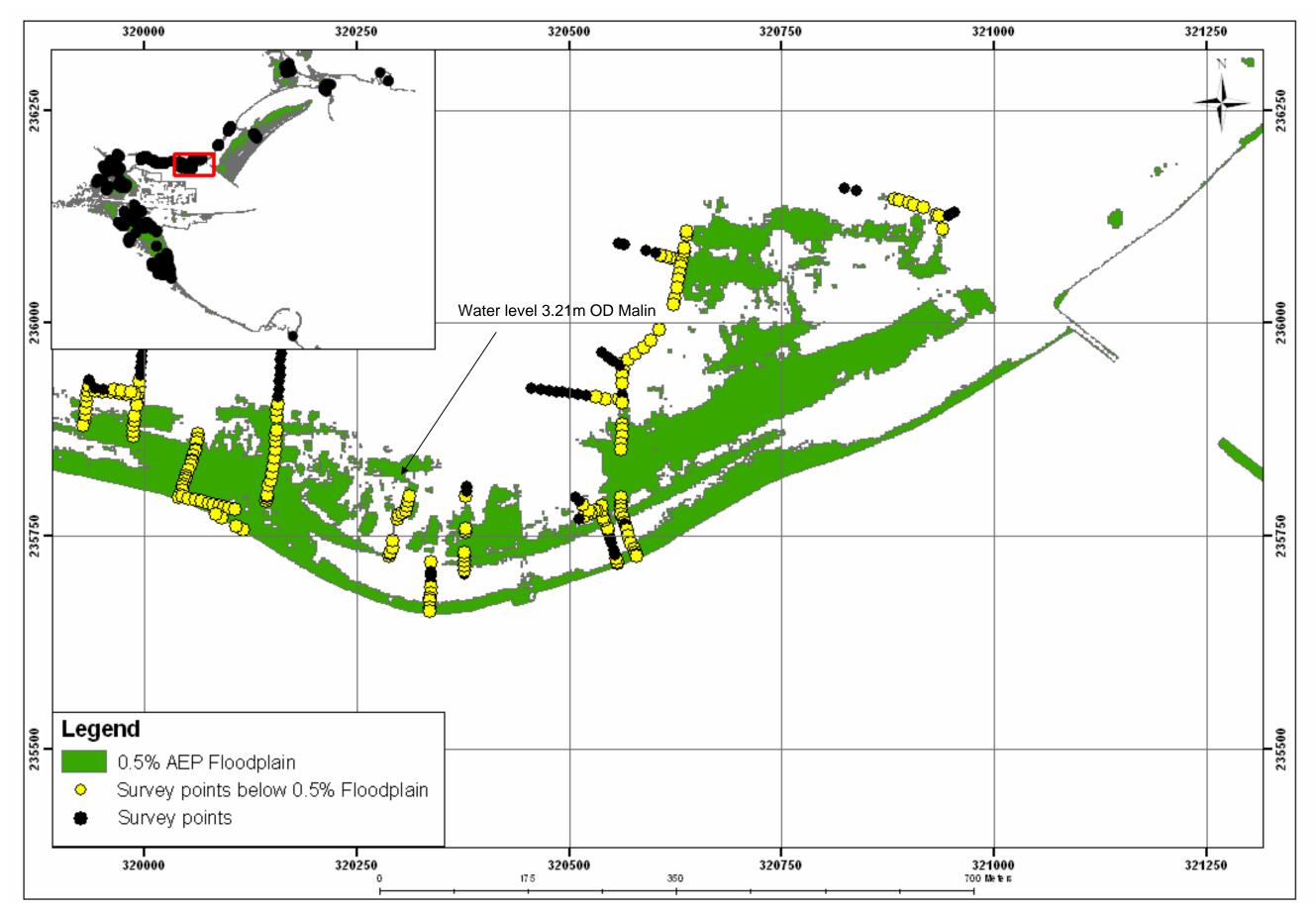


Figure 33: Comparison of 0.5% AEP Floodplain and Survey Data – Clontarf (Dublin Survey Points)

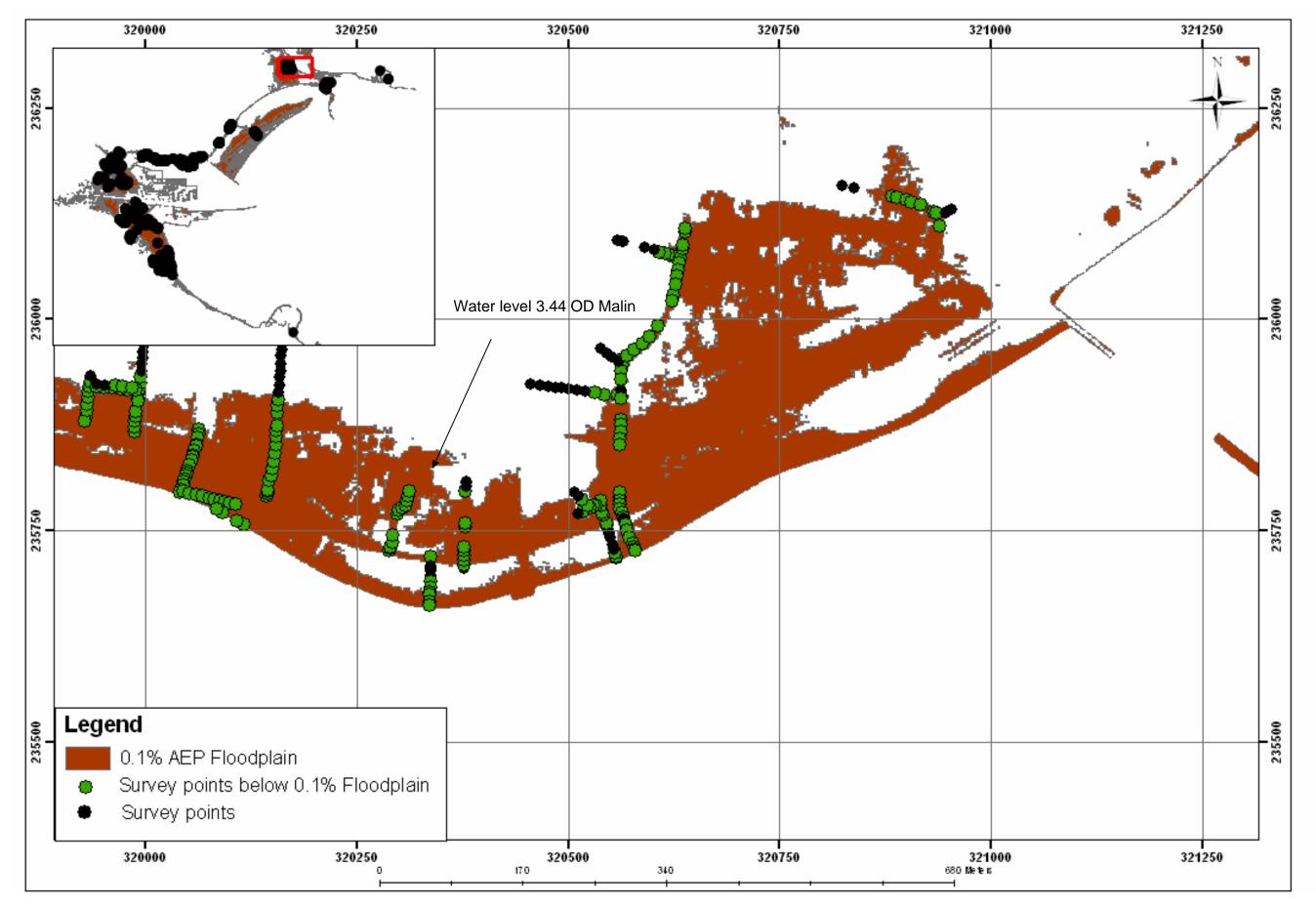


Figure 34: Comparison of 0.1% AEP Floodplain and Survey Data – Clontarf (Dublin Survey Points)

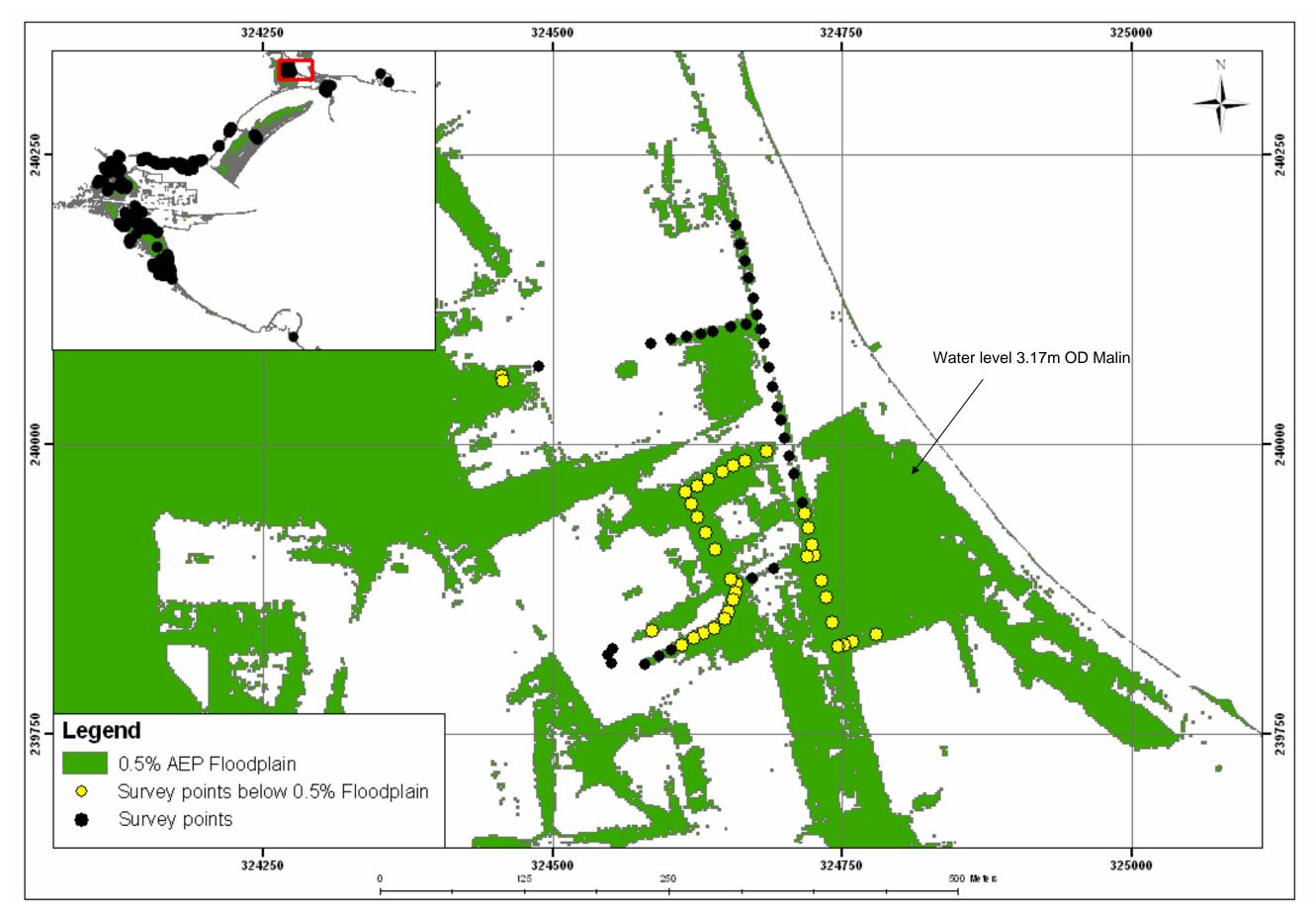


Figure 35: Comparison of 0.5% AEP Floodplain and Survey Data – Portmarnock (Dublin Survey Points)

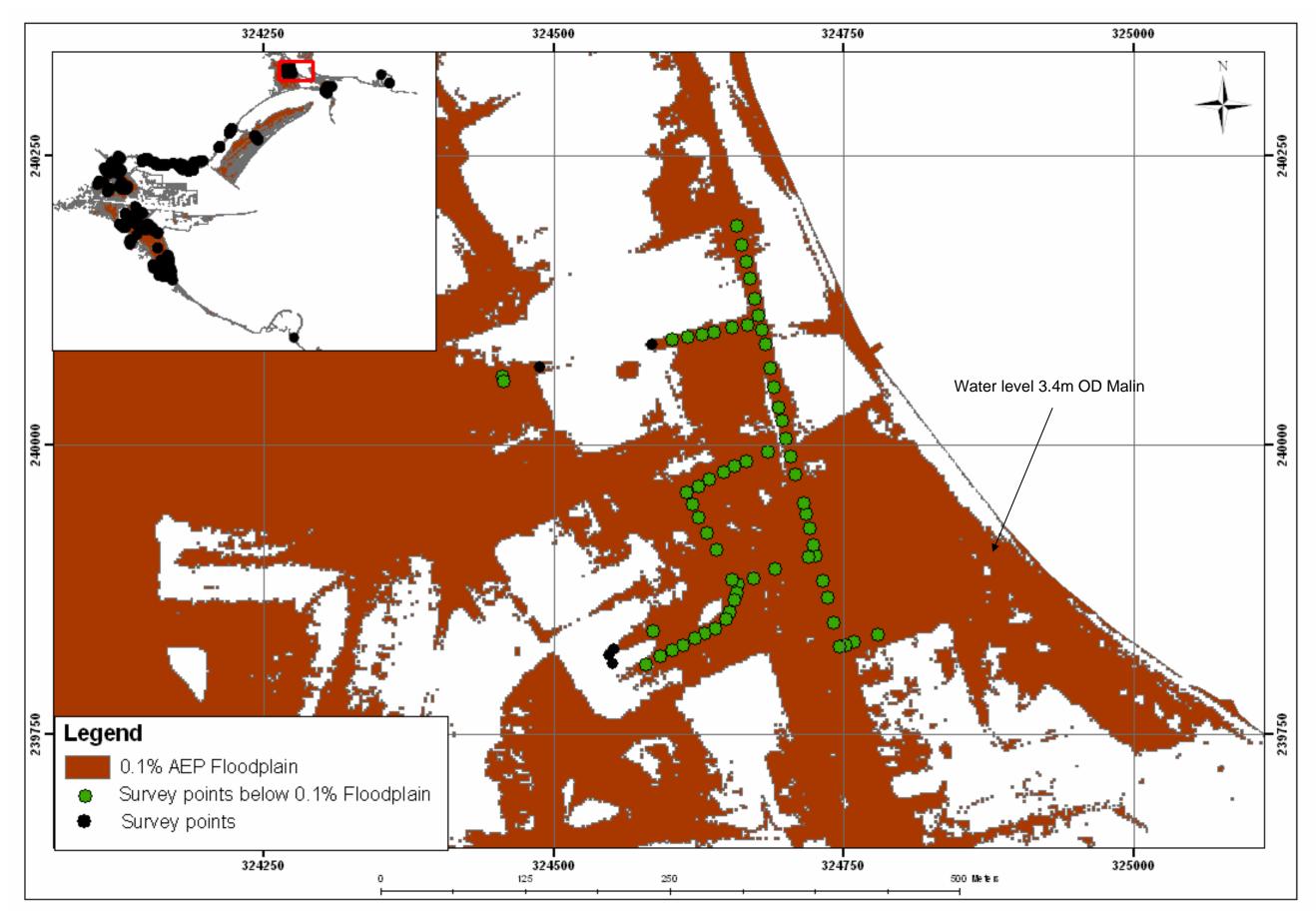


Figure 36: Comparison of 0.1% AEP Floodplain and Survey Data – Portmarnock (Dublin Survey Points)

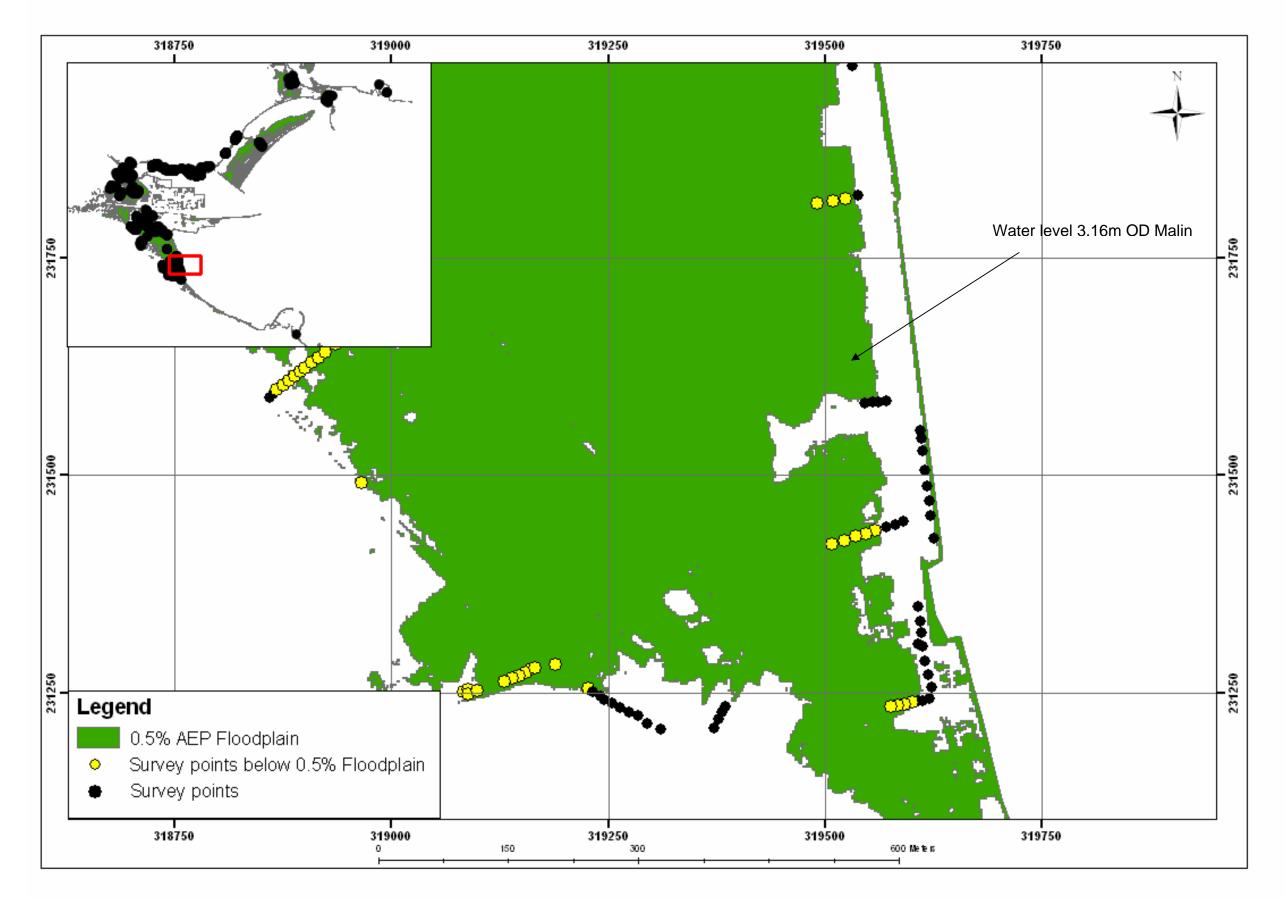


Figure 37: Comparison of 0.5% AEP Floodplain and Survey Data – Sydney Parade (Dublin Survey Points)

Appendix 6 QC Survey Report

Irish Coastal Protection Strategy Study Phase 3 – North East Coast

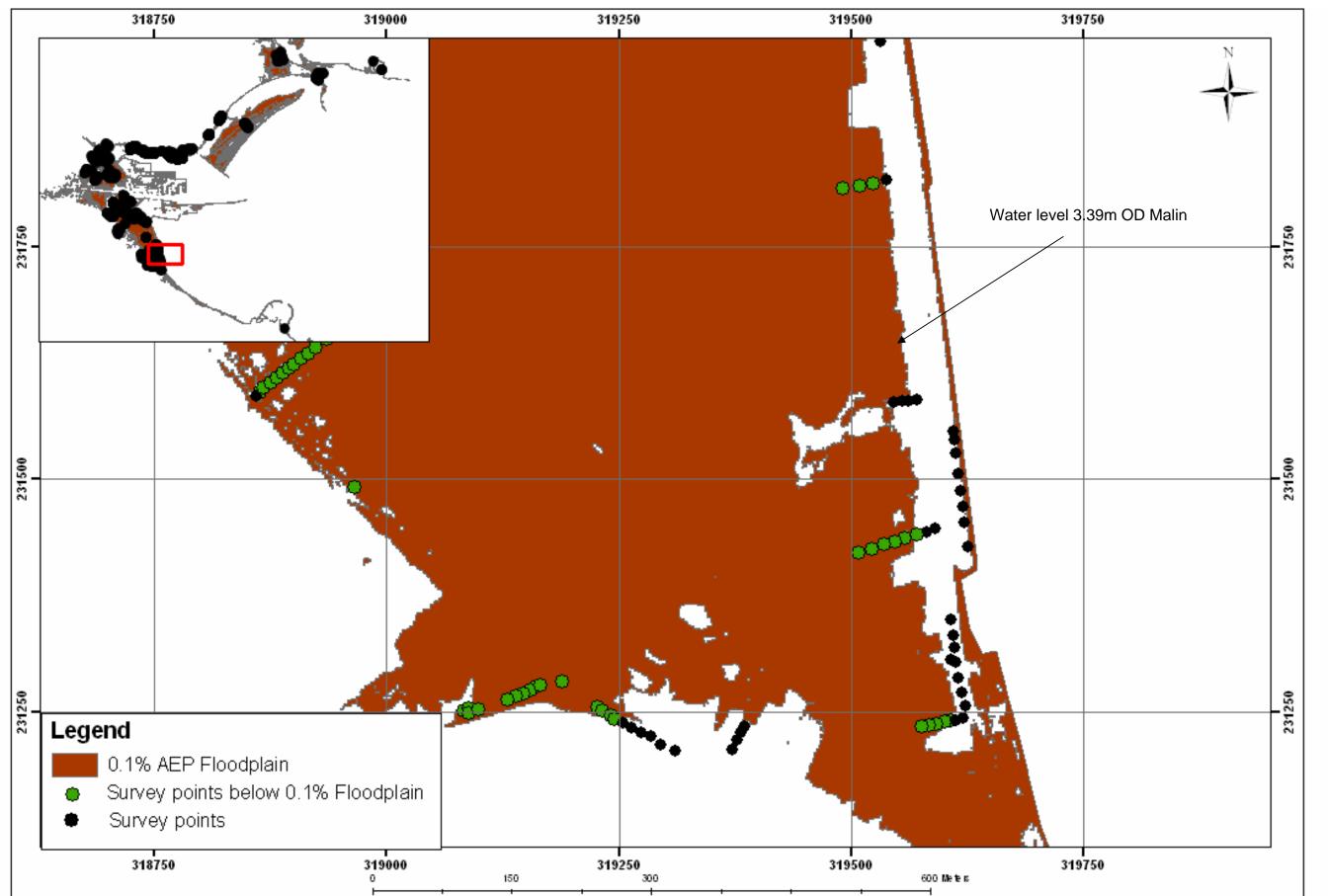


Figure 38: Comparison of 0.1% AEP Floodplain and Survey Data – Sydney Parade (Dublin Survey Points)

Appendix 7: Floodplain maps including flood extent maps for 0.1% and 0.5% AEP events, and flood depth maps for 0.5% AEP event (issued under separate cover)

Appendix 8: Erosion Maps for 2030 and 2050 (issued under separate cover)

Appendix 9: Confidence in Flood Extents and Erosion Lines

Appendix 9a: Confidence in Flood Extents

IRISH COASTAL PROTECTION STRATEGY STUDY – ANALYSIS OF CONFIDENCE IN FLOOD EXTENTS

1.0 Introduction

A fundamental issue in the delivery of the final flood extents as part of the Irish Coastal Protection Strategy Study was the level of confidence which they could be assigned. Data used in the production of any flood extents is rarely of consistent accuracy and may vary depending on location. Consequently a level of confidence was required to reflect the reliability of the input data, together with any discrepancies in the methodology of determining the flood extents.

RPS therefore developed a quantitative methodology for determining the level of confidence in the flood extents, based on a scoring and weighting system, and the establishment of five confidence classifications based on various parameters in the flood extent determination.

This report describes the methodology used and the outcome for the north east coast study area.

2.0 General Methodology

The methodology adopted was based on the scoring and weighting of various parameters which influenced the position of the flood extents, and it established the level of confidence to be assigned to these flood extents; from very high, high or medium confidence to low or very low confidence. The parameters analysed are listed below.

- DTM Accuracy of the Digital Terrain Model (DTM)
- MALIN Accuracy of the conversion from Mean Sea Level (MSL) to Ordnance Datum (OD) Malin
- MODEL Accuracy and level of detail of the model
- MET Accuracy and quantity of meteorological data

A matrix was established using the above parameters, which were assigned a confidence rating, from 1 (complete confidence) to 10 (no confidence) at intervals along the study coastline. This range was large to allow a reasonable scale for future updates of these values. The values were then squared and multiplied by a weighting, related to the potential size of the resulting error in the flood extents, due to each parameter. To compute the final confidence rating, the root sum of the squares of the component confidence ratings times the weightings were calculated and expressed as a percentage of the potential score range. This was equivalent to applying the Gaussian equation generally used for error analysis. The matrix was then

used to determine the overall confidence (very high, high, medium, low or very low) of the flood extents for the particular segment of coast.

The Confidence SumTotal was given by;

$$\sqrt{W_1 C_{DTM}^2 + W_2 C_{Malin}^2 + W_3 C_{Model}^2 + W_4 C_{Met}^2}$$

Where W_{1-4} represented the relevant weighting and the C values represented the confidence factors.

This simplified approach ignored interdependencies between the confidence components and the fact that these confidences may have related to over or under estimation of the flood levels, where the net effect was reduced or null. It also assumed that the confidence ratings were approximately normally distributed about the mean and it tended to highlight the least confident parameter.

It was noted that a feature of methods with multiple confidence sources is that the user tends to under-estimate the confidence, as there is a tendency to always assign some uncertainty to each category. For this reason, the default values were ascribed to give medium confidence (~50%) providing scope for movement in either direction.

2.1 Accuracy of the DTM

As the DTM was established for the purpose of a strategic study, the level of detail may have not been as high as that of a more localised or detailed study and this was considered when assigning confidence ratings. Unlike for the south east coast, the level of detail of the north east coast DTM was consistent along the coastline, as one DTM dataset was gathered for all areas.

The accuracy of the DTM was considered in terms of the mean height difference and the average of the 95% Confidence limits, where height difference referred to the difference between the DTM and the Quality Control Survey for each stretch of coastline.

2.2 Mean Sea Level to OD Malin Conversion

The Mean Sea Level (MSL) to OD Malin conversion model used in this study to help define the flood extents has been improved in recent years, but remained another factor affecting the level of confidence in the flood extents. Future modelling of the coastline may use an enhanced MSL to OD Malin conversion model, and so, as a necessity, the methodology and scale was developed to take account of this and allowed room for improvement.

2.3 Accuracy and Level of Detail of the Model

Model accuracy and detail depended on factors such as cell size, time step and the internal stability of the model. Ideally, all these factors would have been represented in the confidence analysis; however cell size and time step should actually vary depending on the requirements of the model and on the features within it. For example, model output from an open coastline with a cell size of 20-50 metres, would not yield any more accurate results compared to a grid size of 200 metres. However, the modelling of a tidal inlet quite often necessitates cell sizes of 20-50 metres for sufficient accuracy. Even with a highly detailed model, if the bathymetry data is not available at sufficient resolution to compliment the cell size, no more accurate results can be obtained, compared to a model of less detail. Determination of cell size therefore depended upon judgement of the modeller setting up the simulations and was difficult to quantify.

For this strategic study, the correlation of model data with relevant tide gauge data was considered to represent the accuracy of the model outcome.

The confidence in the model was taken from four factors;

- the distance between the water level points extracted from the model and the location under analysis,
- the general type of coastline under consideration, for example, open coastline or narrow sea loughs
- the confidence limits of the statistical analysis achieved on output of the model results and
- the correlation of the model results with tide gauge data.

While the first three factors were considered independent, model calibration and hence 'tuning' of the model depended on the level of accuracy of the gauging data used for comparison. The gauges used were located at different sites, where shallow water effects may have been dominant, which might not have been picked up by the methodology used for calibration. Furthermore, tide gauges on tidal river sections may have been influenced by river flow, thus affecting the harmonic analysis and the resulting astronomic tide. These influences along with factors such as damaged gauges, systematic errors and length of gauge data available were taken into account for the model calibration parameter.

2.4 Accuracy of Meteorological Data

The computational modelling of water levels required both meteorological and tidal records over as long a time period as possible. The simulations for this study were run on a hindcasting basis, using historical recorded atmospheric pressure and wind data generated from the European Centre for Medium-Range Weather Forecasts (ECMWF). The meteorological records used dated

from the 1950's to present and have increased in accuracy over time as the meteorological models have been improved. The grid spacing of the ECMWF models has improved, with a resolution of 1.125° used between 1957 and 1991, 0.5° between 1991 and 2007, and 0.25° post 2007. The ECMWF models are also modified and improved frequently. Therefore the more events used in recent years, the more confidence can be attributed to the meteorological data, meaning that future modelling of the coastline has more potential for confidence, with an increase in the number of recent events used. However, it should be noted that this can only apply when a reasonable spread of data has been taken, over a significant number of years. For example, a dataset hosting only results from recent years would not give a true representation of extreme storm surge events over a 50 year period. From a statistical point of view, it is better to have as many events as possible, spread over the analysis period. Otherwise, it would have to be assumed that a trend exists, which would limit the validity of the statistical analysis.

In the initial stages of producing the confidence methodology for the flood extents, a factor named 'Event Dependency' was used, referring to the proportion of events used in more recent years gaining higher confidence. However, upon further consideration a decision was made to remove this factor, as it was a misleading and inaccurate representation of MET confidence. Although the events from recent years may have had a higher accuracy of meteorological data, in order for the statistical analysis to be reliable, a reasonable spread of events was mandatory. Therefore the proportion of recent events should be similar for all coastlines.

The selection of the storm surge events which were used to produce the water levels for the flood extents, was directly related to the reliability of historic tide gauge data. While the quality of the recorded data was of lesser importance, it was vital that the records did not omit any significant events. Even if the records had gaps and thus a large event had not been recorded or archived for a particular tide gauge location, then provided there were sufficient other tide gauges covering the section of coast, it should have been possible to identify the event. Therefore, the accuracy of the water level predictions from the tide gauges depended more on the number of storm surge events used to compute the water levels. Accuracy was also increased by having more historic records of storm surges available for assessing which periods to simulate for each stretch of coastline.

Two factors therefore were used to establish the overall confidence in the meteorological data; the number of years of tide gauge data available and the number of events used.

3.0 Confidence Analysis Results

To present the results of the confidence analysis it was necessary to create a raster grid of confidence ratings for the entire north east coast. This grid used a 500m x 500m spacing, and showed the high water mark and a 2000m buffer for geographical reference. Confidence ratings for DTM, MALIN, MODEL and MET were established using various computations on Microsoft Excel, as described in this Section. The confidence ratings were represented in the grid both manually and through computational interpolation. Each of the parameters are described in the following sub-sections.

3.1 Accuracy of the DTM

The confidence analysis of the DTM was based on the accuracy assessment of the DTM undertaken as part of this study (refer Quality Control Survey Report, Appendix 6).

The accuracy of the DTM was considered in terms of the mean height difference and the average of the 95% confidence limits, where height difference referred to the difference between the DTM and the Quality Control Survey points for each stretch of coastline. The average of the 95% confidence limits was derived by ignoring the negative value for the lower limit, and assuming both limits to be positive. It was further assumed that the number of Quality Control Survey points was chosen, to provide a representative sample in the context of statistics and that the survey itself was of the highest possible accuracy, as otherwise this comparison would have become meaningless.

The accuracy statistics for all surveyed areas are shown in Table 1. Quality control points were collected for Dundalk in 2006 and again in 2008, which yielded two sets of accuracy statistics for this location. The Dundalk statistics were combined proportionally, based on the number of control points for each exercise. The mean height differences for all areas ranged from -0.040m at Dundalk in 2008 to 0.104m at Drogheda. Balbriggan had the lowest average 95% confidence limit of 0.115m, with Dundalk 2006 having had the highest at 0.423m.

North East Locations	Mean Height Difference (m)	Lower 95% Confidence Limits (m)	Upper 95% Confidence Limits (m)	Average 95% Confidence Limits (m)
Port Oriel	0.020	-0.267	0.283	0.275
Balbriggan	0.017	-0.112	0.117	0.115
Malahide	-0.013	-0.175	0.228	0.202
Drogheda	0.104	-0.057	0.283	0.170
Dundalk 2006	0.043	-0.376	0.469	0.423
Dundalk 2008	-0.040	-0.190	0.102	0.146
Dundalk Combined	0.041	-0.252	0.224	0.238
Dublin	0.091	-0.060	0.235	0.148

-		
I able 1: Accuracy	/ Statistics for Area	s on North East Coast

A rating system was established for both statistical parameters, as shown in Table 2. A rating of 1 was awarded for a mean height difference between 0 and 0.02m, with a rating of 10 for difference values over 0.25m. The average 95% confidence limit ranged from 0 to 0.1m for a rating of 1, to over 0.9m for a rating of 10. These ratings were assigned for mean height difference and average 95% confidence limits for the different areas listed in Table 1. Both parameters were considered to be of equal weighting, hence were averaged to produce the final rating for each area, as shown in Table 3. For example, Dublin had a mean height difference of 0.091m and an average 95% confidence limit of 0.148m, which corresponded to ratings of 5 and 2 respectively. The average of these two ratings was rounded to 4, which produced a final confidence rating of 4 for the Dublin DTM, as shown in Table 3. The values were added to the relevant areas on the raster grid.

Rating	Mean Height Difference (+/-)	Average 95% Confidence Limit (+/-)
10	0.25+	0.9+
9	0.19 - 0.25	0.8 - 0.9
8	0.16 - 0.19	0.7 - 0.8
7	0.13 - 0.16	0.6 - 0.7
6	0.10 - 0.13	0.5 - 0.6
5	0.08 - 0.10	0.4 - 0.5
4	0.06 - 0.08	0.3 - 0.4
3	0.04 - 0.06	0.2 - 0.3
2	0.02 - 0.04	0.1 - 0.2
1	0.00 - 0.02	0.0 - 0.1

 Table 2: Ranges for each Rating for all Statistical Parameters

North East Locat	ions
Port Oriel	2
Balbriggan	2
Malahide	2
Drogheda	4
Dundalk Combined	3
Dublin	4

Table 3: Final Confidence Ratings for all North East Areas

3.2 Mean Sea Level to OD Malin Conversion

The Mean Sea Level to OD Malin conversion was originally based on individual points with conversions from UK Hydrographic Office tide tables. This was developed further and for the purpose of this study, the OD Malin Geoid was used for the conversion, as described in Section 6 of the main report. Thus, the Mean Sea Level to OD Malin conversion had improved compared to the initial methodology; however it had not been tested against a sufficient number of tide gauge locations, to get a measure of the accuracy of this conversion. Thus the confidence was considered medium and is expected to improve in the future with more data. Consequently as with the south east coast a confidence rating of 5 was applied to the extents of the north east coast on the raster grid. Table 4 shows the assigned confidence ratings for the NE and SE coastlines.

Table 4: Confidence Ratings awarded to the South East, and North East Coasts for MSL to OD Malin correction

SE	NE
5	5

3.3 Accuracy and Level of Detail of the Model

The confidence in the model was taken from four factors as outlined in Section 2.3 above.

Each of these factors were considered to have equal weighting and are discussed in detail in the following sections.

3.3.1 Distance of flood extent to water level point

The effect of distance between each water level extraction point along the coast on the accuracy of the model predictions was assessed in detail as part of the initial study for the south east coast model analysis. Water levels were extracted from the model and the Extreme Value Analysis (EVA) fitted at specific points to establish the optimum frequency of the water level points along the coast. It was found that there was very little variation in water level between the points along open sections of the coast, and thus the spacing was selected such that any error in the water levels was significantly lower than the uncertainty in the spatial distribution. Therefore it was assumed, with

regard to water level, that the same confidence could be applied to the north east coast between the water level extraction points, when in open water.

As the water level was extrapolated inland the confidence in these water levels changed. It was decided to increment the confidence initially at 500m spacings, increasing thereafter as shown in Figure 1. High confidence was assigned to those cells around the water level extraction points and along the high water mark, denoted by a bold red line. With distance inland, confidence in the water levels decreased non-linearly, as shown in Figure 1. A non-linear manner was chosen in order to facilitate the spreading of confidences over the entire analysis area, with more focus on areas near to the high water mark.

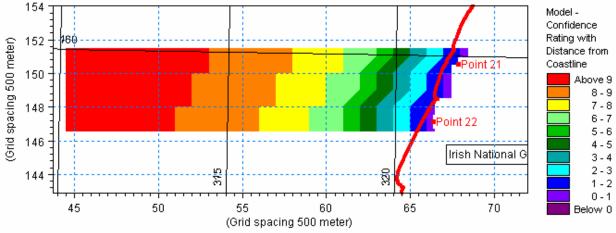


Figure 1: Confidence awarded to cells with distance inland

3.3.2 Type of coastline

A key consideration behind the assessment of the type of coastline for model confidence is that complex coastlines are more likely to be inaccurately represented in a model than simple coastlines, even if the same degree of calibration was used. Where a model features open coastline with a good correlation to a nearby tide gauge, then the water levels along that section of coastline are very likely to be accurate. In contrast, narrow sea loughs and fjords can produce complex resonance effects, which are more difficult to simulate correctly. Furthermore the bathymetry could change with time, thus changing the tidal response of the estuary. Tidal sections of rivers are largely influenced by fluvial flows, local wind effects and changes in bed level, making them one of the least confident stretches of coastline to simulate.

The ratings applied to different types of coastal segments ranged from a rating of 1 for very open coastline, to a rating of 10 for tidal sections of rivers. This is shown in Table 5. The coastline was reviewed and the ratings applied along the high water mark on the raster grid. In this case, the values ranged from 4 to 10, as higher confidence would only be awarded for more open

coastlines, such as at the Atlantic Ocean. These ratings on the high water mark were interpolated to produce values for all inland cells.

Rating	General Type of Coastline
10	Tidal sections of rivers
9	
8	
7	Narrow Sea Loughs
6	
5	
4	Open
3	
2	
1	Very Open e.g. Atlantic

Table 5: Confidence Ratings for Type of Coastline

3.3.3 Statistical confidence limits of Extreme Value Analysis (EVA)

The Extreme Value Analysis (EVA) used the Jack-Knife re-sampling method to define statistical confidence limits, as described in Section 5 of the main report. It was decided to use the 1.0% AEP water level standard deviations in order to assess of the accuracy of the model output. In principal, it did not matter which AEP was chosen, as in the Jack-Knife method, the confidence limits are proportional for the various return periods. Confidence limits depended on the number of events taken, i.e. the number of storm surge events, which was also considered as part of the confidence in the meteorological conditions.

Values were extracted from the north east coast EVA, to represent the statistical confidence of the water levels for each of the 26 north east coast water level extraction points. Each of these 26 values were awarded a confidence rating between 1 and 10, where 10 coincided with a 200mm standard deviation or higher and a rating of 1 for 0 to 20mm, as shown in Table 6. These confidence ratings were transcribed to the raster grid, and interpolated to fill in the gaps.

Rating	Confidence limits of Output - EVA _ Standard Deviation (1 in 100 year) (mm)
10	200+
9	150-200
8	120-150
7	90-120
6	70-90
5	60-70
4	50-60
3	40-50
2	20-40
1	0-20

Table 6: Confidence Ratings for Statistical Confidence

3.3.4 Validation of the Model

The fourth parameter for model confidence related to the correlation of the tide gauge data with the model. This correlation was based on a comparison of the high water levels from the model and tidal predictions at a given location over a one month period (two full neap/spring tide cycles). As this method relied heavily on the accuracy of the tidal prediction itself, the gauge data was required to be assessed as well. The confidence in the gauge data was estimated using three factors with varying weightings; namely the location of the gauge, whether any problems had been encountered with the gauge and the length of gauge data used. Four gauges were used in the model calibration for the north east coast. The results for each gauge are shown in Table 7.

Table 7: Confidence Parameters for North East Coast Calibration
Gauges

		North East Coast Gauges			
	Categories	Dublin	Dublin Port Oriel Port Erin Portpatric		Portpatrick
1	Location of Gauge	Port	Port	Port	Port
2	Severity of Gauge Problems	Seiching	No	Minor Fouling	No
3	Length of Gauge data (months)	36	8.5	144	480

Again, each gauge parameter needed to be scaled from 1 to 10. The confidence ranges corresponded to the scale of 1 to 10 for each of the three parameters shown in Table 8. For gauge location, a rating of 1 described perhaps a pelagic location, for example an open island, with a rating of 10 for a river location. A rating of 1 was awarded to a gauge with no recorded problems, whilst a rating of 10 was given to an extremely unreliable gauge. It should be noted that for the severity of gauge problems, gauges were rated according to the type of problems encountered. For example, a problem with a datum was considered not as severe as a siltation problem. Gaps in the

dataset were also undesirable. For length of gauge data, 61 months or over was awarded a rating of 1, with a rating of 10 given to a gauge with only 0 to 1 month of data, or a gauge derived from information from the UK Tide Tables.

Rating	Location of Gauge	Severity of problems with gauge	Length of Gauge Data (Months)
10	D – River	Extremely Unreliable	Tide Tables or 0-1 month
9		Unreliable	2-4 months
8		Poor	5-8 months
7	C - harbour/port - other influences	Below Satisfaction	9-12 months
6		Satisfactory	13-16 months
5		Good	17-20 months
4	B - open harbour/port	Very Good	21-30 months
3		Extremely Good	31-40 months
2		Excellent	41-60 months
1	A - Pelagic, open, e.g. Island	Perfect - No recorded problems	61+ months

Table 8: Ratings for Gauge Parameters

A confidence rating was established for each of the four gauges individually, by applying the relevant weightings, as shown in Table 9. A weighting of 1 was used for gauge location and gauge problems, and a weighting of 2 for the length of available gauge data, as this was considered to potentially give rise to greater error in the flood extents. Table 9 also provides an example of how the final confidence rating was established for the Dublin gauge. Each of the confidence ratings were multiplied by their corresponding weighting. The sum total of these three numbers was divided by four (which represented the total of the three weightings), in order to produce one single value for confidence in the Dublin gauge. Similarly, the confidence ratings for the other three gauges were computed and are shown in

Table 10. The Port Erin and Portpatrick gauges were awarded the most confident rating of 2.00, with the Port Oriel gauge being noted as the least confident with a rating of 5.75.

Table 9: Weightings of Confidence Parameters for Validation of Model

	Dublin			
	Weighting	Rating	Weighting*Rating	Confidence
Number of Gauges	1	6	6	
Severity of problems with gauges	1	4	4	4
Length of Gauge Data (Months)	2	3	6	

Table 10: Confidence Ratings for Gauge Parameters							
North East							

Dublin	Port Oriel	Port Erin	Portpatrick				
4.00	5.75	2.00	2.00				

On completion of the determination of the reliability of the tide gauge data, it was necessary to assess the correlation of this gauge data with the actual model data. This was achieved through the computation of a correlation coefficient for each gauge, established from the high waters of each data set. The correlation coefficients for each gauge on the north east coast are shown in Table 11.

North East	Port Erin	Port Oriel	Portpatrick	Dublin
Correlation Coefficient	0.990	0.988	0.984	0.991

The ratings applied to each gauge for model correlation are shown in Table 12. These correlation coefficients only described the goodness of fit between the predicted and simulated data sets, but for the overall model calibration, the ratings needed to be taken in conjunction with the accuracy of the gauge data itself. Thus the two ratings for each gauge were multiplied, and the square root taken, in order to produce the final combined confidence ratings for model calibration, as shown in Table 13. For example, a gauge rating of 4.0 for Dublin was established as described above, and multiplied by a correlation rating of 1, from Table 12. The square root was taken to produce a value of 2, which is the overall confidence rating for model calibration in Table 13. The overall confidence ratings were then applied to the north east coast grid at the relevant locations.

Table 12: Confidence ratings	s for Model Correlation	with Tide Gauge Data
------------------------------	-------------------------	----------------------

Correlation between predicted and model high waters	Rating	Port Erin	Port Oriel	Portpatrick	Dublin
<0.9	10				
0.900-0.940	9				
0.940-0.960	8				
0.960-0.970	7				
0.970-0.976	6				
0.976-0.981	5				
0.981-0.985	4			4	
0.985-0.988	3				
0.988-0.990	2		2		
0.990+	1	1			1

Table 13: Overall Confidence Ratings for Model Calibration

Port Erin	Port Oriel	Portpatrick	Dublin
1	3	3	2

3.3.5 Overall Model Ratings

Each of the four overall model parameters was considered to be of equal weighting, and thus they were averaged, in order to compute a total model confidence for each cell.

3.4 Accuracy of the Meteorological Data

Two factors were used to establish the overall confidence in the meteorological data;

- the number of events simulated, and
- the number of years of tide gauge data available.

To gain an understanding of the number of events simulated, the north east coast was considered in conjunction with the south east and south coasts, for the purpose of this study. The number of events simulated for each coastline was recorded in Table 14. A total of 55 events were simulated for the south east coast, with 79 and 76 events being simulated for the north east and south coasts respectively.

Table 14: Number of Events used in Model Simulations

Number of events used	SE	NE	S
Total	55	79	76

A confidence rating was applied to the north east coast, according to the scale in Table 15, with a value of 3 representing the 79 events simulated.

Number of events used	Rating	NE
0-10	10	
10-20	9	
20-30	8	
30-40	7	
40-50	6	
50-60	5	
60-70	4	
70-80	3	3
80-110	2	
110-150	1	

Table 15: Confidence Ratings for Number of Events Simulated

This study was limited to 50 years of gauge data or less, due to limits on the available meteorological data. Ideally, 50 years of data from two separate tide gauges would have been used, or a combination of more tide gauges spread along the coast, in order to cover the required years of simulation and coastline. Therefore 100 years of tidal data would have been required from each coastline to achieve high confidence with respect to the gauge data. The available tide gauge data from Dublin, Quoile, Port Erin and Portpatrick, used for the north east coast is shown in Table 16. The maximum number of years required from one gauge, or a combination of gauges was fifty years, hence the final row in the table was produced (51 and 58 were capped to 50). The maximum total possible was 100 and hence the Port Erin and Portpatrick gauge data was not included in the final score. The values of 50 for Dublin and 50 for Quoile were added to give a final value of 100, which was used to establish a rating of 1 for the north east coast, as shown in Table 17.

Name of Gauge	Dublin	Quoile	Port Erin	Portpatrick	Total
Length of data (years)	51	58	11	37	
Length of data - max 50years	50	50	excess	excess	100

Table 16: Gauge Data available for North East Coast

Table 17: Confidence Ratings for Number of Years of Gauge Data

Number of Years of Gauge Data	Rating	NE
<40	10	
40-50	9	
50-60	8	
60-70	7	
70-80	6	
80-85	5	
85-90	4	
90-95	3	
95-100	2	
100+	1	1

An overall individual confidence rating for the north east coast was established by averaging the ratings from the two MET factors; 3 for the number of events simulated and 1 for the available gauge data. This average value of 2 is shown in Table 18 and was applied to the raster grid, over the entire north east coast area.

Table 18: Weightings for Number of Events Used and Gauge Data, alongwith Final Ratings for Meteorological Data

	Weighting	SE	NE	S
Number of events	1	5	3	3
Gauge Data	1	3	1	4
Average		4	2	4

4.0 Results of Combined Confidence

With all four confidence parameter ratings transcribed to the raster grid, under individual items, the combined confidence for the entire north east coast was established. Weightings were assigned to each of the confidence parameters; 5 for DTM, 1 for Malin, 4 for Model and 3 for Met, as shown in Table 19. These weightings were assigned depending on the potential size of error the flood extents could be subject to, due to each parameter. Consideration was given to these weightings, and various analyses carried out to determine the optimum weightings, relative to each other and on a broad scale.

Confiden	Weighting	
W1	DTM	5
W2	Malin	1
W3	Model	4
W4	Met	3

Table 19: Weightings assigned to individual confidence parameters

The final confidence value for each of the cells in the raster grid was calculated using the following formula:

$$\sqrt{W_1 C_{DTM}^2 + W_2 C_{Malin}^2 + W_3 C_{Model}^2 + W_4 C_{Met}^2}$$

Potential scores from the formula ranged from 3.606 (using all 1 ratings) to 36.056 (using all 10 ratings). These were shifted to produce high confidence for a value of 0 and low confidence for a value of 32.45. The uncertainty values for each cell were then expressed as a percentage of the range (32.45) and subtracted from 100 percent to produce the confidence score.

Confidence scores ranged for example from circa 62% to 74% in Dublin, 61% to 79% in Drogheda and 65% to 78% in Dundalk. Figure 2, Figure 3 and Figure 4 show a representation of the final confidence percentages for Dublin, Drogheda and Dundalk respectively.

It was decided to classify the final scores into five groups in terms of very high, high, medium, low and very low confidence. These confidence ratings are shown in Table 20. For example, flood extents in the Dublin, Drogheda and Dundalk areas were considered as having high or very high confidence. The final flood extents with assigned confidences for the entire north east coast are shown in Appendix 7 of this report. Most of the flood extents were classified as having high confidence, with a large number of areas also showing very high confidence. It should be noted that very low confidence was assigned to any flood extents which coincided with the landward limit or boundary of the DTM as it was not possible to identify the location of the flood extent in the absence a DTM.

Confidence	Range		
Very High	70%+		
High	60-70%		
Medium	50-60%		
Low	40-50%		
Very Low	<40%		

Table 20: Overall Confidence Ratings

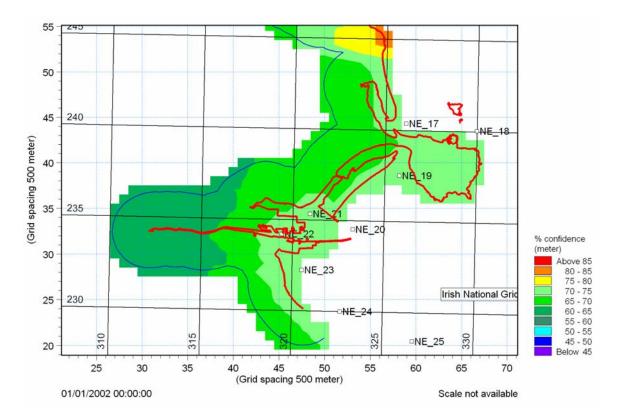


Figure 2: Final Confidence Results for Dublin (Blue line represents 2km buffer and Red line represents High Water Mark)

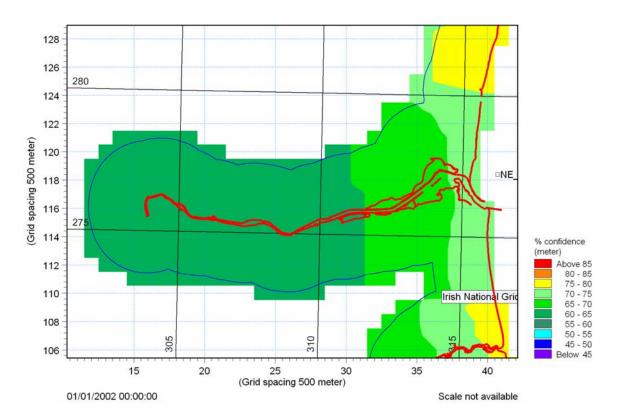


Figure 3: Final Confidence Results for Drogheda (Blue line represents 2km buffer and Red line represents High Water Mark)

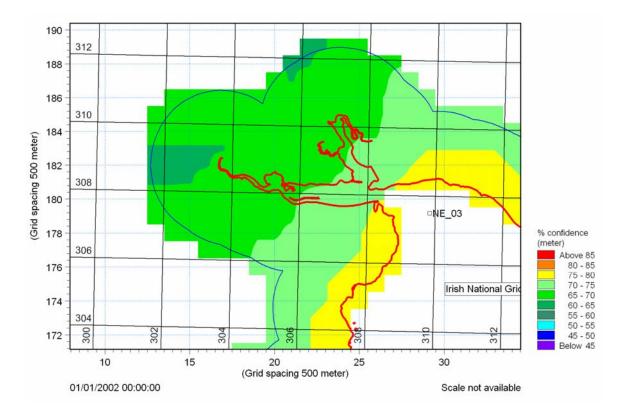


Figure 4: Final Confidence Results for Dundalk (Blue line represents 2km buffer and Red line represents High Water Mark)

5.0 Conclusions

The confidence analysis methodology used to assign confidence to the flood extents has been tested and modified to produce the optimum analysis for this strategic project. It involved the collaboration of qualitative and quantitative information into one overall quantitative database. The results were presented in the form of a raster grid, geographically showing the confidence of flood extents within the study area. The scoring and weighting system has established very high, high, medium, low or very low confidence for various parameters in the flood extent determination; i.e. DTM, MALIN, MODEL and MET. It should be noted that as this methodology required the translation of many qualitative values to quantitative, many assumptions have had to be made.

All cells in the raster confidence grid were expressed in terms of very high, high, medium, low or very low confidence. Very high confidence was represented by a score of over 70%, with high confidence between 60-70%, medium confidence between 50-60%, low confidence between 40-50% and very low confidence being represented by a result of less than 40%. For example, flood extents in the Dublin, Drogheda and Dundalk areas were considered as having high or very high confidence.

The final flood extents with assigned confidence for the entire north east coast are shown on the flood extent maps presented in Appendix 7 of the main report. Digital copies of these are also appended to the main report. Most of the flood extents were classified as having high confidence, with a large number of areas also showing very high confidence.

Appendix 9b: Confidence in Erosion Lines

IRISH COASTAL PROTECTION STRATEGY STUDY – ANALYSIS OF CONFIDENCE IN EROSION LINES

1.0 Introduction

A fundamental issue in the delivery of the final erosion lines is the level of confidence which can be assigned to the prediction of erosion along the coastline. The level of confidence should reflect the reliability of the input data, together with any discrepancies in the methodology used to determine the potential erosion risk. Data used in any erosion assessment is rarely of consistent accuracy and often shows significant spatial variation in accuracy.

RPS have therefore developed a quantitative methodology for determining the level of confidence in the erosion lines, which is based on a scoring and weighting system, establishing four confidence classifications based on various parameters in the erosion extent determination.

This report describes the methodology used and the outcome for the north east coast study area.

2.0 General Methodology

The methodology adopted is based on the scoring and weighting of various parameters which could influence the position of the final erosion lines, and establishes the level of confidence to be assigned to these erosion lines; from very high, high or medium confidence to low or very low confidence.

Four principal parameters were identified for inclusion within the analysis as listed below;

- **Geology** Accuracy and availability of underlying geology
- **Imagery** Geographical accuracy of historical/ recent aerial imagery
- **Resolution** Resolution of assessment
- **Protection** Presence of Coastal Protection Structures

A matrix was established using the above parameters, which were assigned a value of confidence ranging from 9 (complete confidence) to 1 (no confidence) at intervals along the study area coastline. The values were then squared and multiplied by a weighting, depending on the potential magnitude of the error in the position of the final erosion lines, which would result from inaccuracy in each parameter. To compute the final score, the root sum of the squares of the component confidences times the weightings was calculated and expressed as a percentage of the maximum allowable score.

The overall Confidence Sum Total is given by;

$$C_{OVERALL} = \sqrt{W_1 C_{IMAGERY}^2 + W_2 C_{PROTECTION}^2 + W_3 C_{GEOLOGY}^2 + W_4 C_{RESOLUTION}^2}$$

Where W_{1-4} represent the relevant weightings and the C values represent the confidence factors.

This was equivalent to applying the Gaussian equation generally used for error analysis. The matrix was then used to determine the overall confidence (very high, high, medium, low or very low) of the erosion lines for the particular segment of coast.

This simplified approach ignores any interdependencies between the component parts of the confidence analysis and the fact that these confidences may have resulted in over or under estimation of the erosion rates, where the net effect of combination would be reduced or null. It also assumes that the confidences were approximately normally distributed about the mean and tends to highlight the least confident source.

It should be noted that a feature of methods with multiple confidence sources is that the user tends to under-estimate the overall confidence, as there is a tendency to always assign some uncertainty to each category. For this reason, the default values were ascribed to give medium confidence (~50%) providing scope for movement in either direction.

2.1 Underlying Geology

In developing the predictive erosion lines for the years 2030 and 2050, it was assumed that the annual rate of coastal change would be similar to that observed over the past circa 30 years. This is a fair assumption where the period of projection is not overly long and where the underlying geology does not change significantly with distance from the coastline.

The potential for the underlying geology to introduce uncertainty into the fundamental assumption that erosion in the future is going to continue at a similar rate to that observed over the past circa 30 years was considered by reference to the GSi Quatenary sub-soils dataset. A confidence rating was assigned to each section of the coast based on the coverage and complexity of this information.

2.2 Accuracy of the Imagery

The derivation of an "annual" rate of erosion was fundamental to the methodology adopted by RPS in establishing the projected future coastline position in 25 and 50 years. This was established by comparing the position of the coastline, as defined by the visible vegetation line in aerial photography from 1973, 2000 and 2006. Both the 2000 and 2006 photographic series were supplied as geo-referenced digital images however the 1970 data while supplied digitally was not geo-referenced. Thus the accuracy of the subsequent geo-referencing of this data was an essential consideration in the determination of confidence in the resulting erosion lines.

In order to establish the accuracy of this process and the resulting level of confidence in the positioning of the coastline a comparison between physical features, buildings, roads, railway lines etc. as depicted on the 1970 aerial photographs and recent OSi mapping was undertaken. Confidence ratings were assigned to this parameter based on any observed shift in position of the reference features used.

2.3 Resolution of Assessment

The erosion assessment was generally undertaken at a resolution consistent with a strategic level assessment i.e. at circa 1km intervals along the coast, however the actual spacing of the assessment points varied depending on spatial variations in the observed rate of coastal change and variation in coastal form. In order to address the potential impact of the spacing of the analysis points on the final output, confidence ratings were assigned to this parameter based on the distance between adjacent assessment points.

2.4 Protection Status of the Coast

As previously stated the fundamental assumption of the adopted methodology was that coastal erosion would continue in the future at the same rate as was observed over the past circa 30 years. Thus in order to produce a predictive erosion line for a particular section of coast some change in the plan position of the coast had to have been observed during the analysis period.

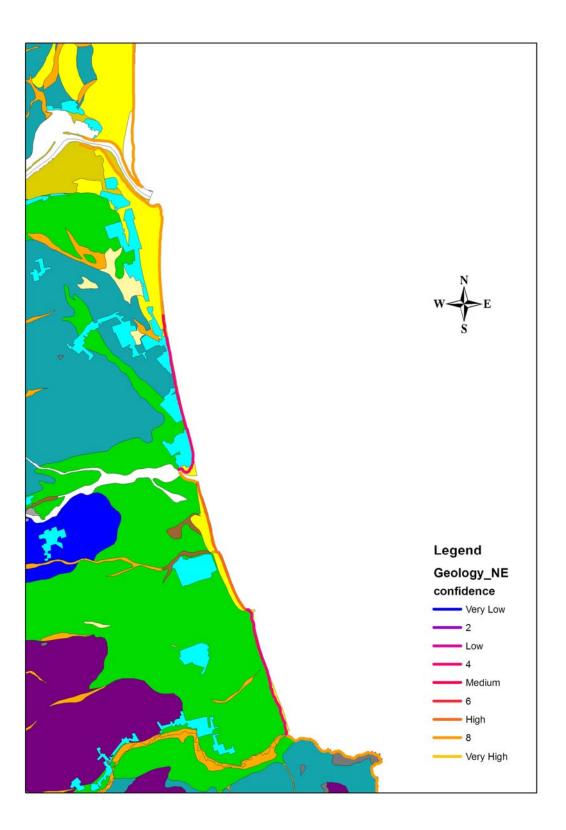
The presence of coastal protection structures at the start of the analysis period, or the introduction of such structures at some time during the analysis period, would obviously have a significant impact on the prediction of future erosion lines for a particular segment of coast which would reduce the level of confidence in that prediction. Conversely there are some areas of coast that are naturally resistant to erosion e.g. where the coastline comprises outcrops of hard rock, thus giving a high degree of confidence in the prediction of no potential erosion risk in these areas.

The presence of coastal protection structures or naturally resistant coastlines was established by reference to plan aerial photography, both historic and recent, and also by reference to the Coast of Ireland, Oblique Imagery Survey of 2003.

3.0 Confidence Analysis Results

To present the results of the confidence analysis it was necessary to create four GIS shapefiles for the entire length of the north east coastline. Confidence ratings for each of the individual parameters were manually assigned to the appropriate sections of these lines to produce individual confidence lines for the effects of underlying 'geology', 'accuracy of imagery', coastal 'protection' and 'resolution' of the erosion analysis. These were then combined to form one line representing overall erosion confidence on the north east coast, which was displayed on the baseline used for the erosion analysis, the vegetation line as derived from the 2000 aerial photographic series.

3.1 Underlying Geology


Due to the extensive spatial extent of the study area the confidence analysis for the effect of underlying geology was based on the use of spatial datasets rather than specific site inspections. For the north east coast the GSi Quatenary sub-soils dataset was used to determine the complexity of the underlying geology along and behind the present coastline.

The level of detail provided within this dataset varied spatially along the coast both as a result of variations in the complexity of the underlying geology and also due to data availability. Thus a confidence rating was assigned to each section of the coast based on the coverage and complexity of the information contained within the GSi sub-soils dataset.

In areas where there was no information on the underlying geology a low confidence rating (1) was assigned. Where the underlying geology was shown as extensive occurrences of the same or similar material a high confidence rating was awarded (8). All other areas were assigned a confidence rating somewhere between these two extreme values (2-7), the actual rating being dependent on the complexity of the sub-surface geology indicated by the GSi dataset. Figure 1 shows an example of the GSi data and resulting geological confidence rating in the Laytown area while Figure 2 shows the same information for the coastline between Dunany Point and Annagassan.

Approximately 12% of the north east coast has a very low geological confidence (<2) with the most extensive area occurring around Dublin Bay where there is a significant stretch of the coast for which no geological information was available. Conversely over 56% of the north east coast achieved a high geological confidence rating (>7). Overall the mean geological confidence rating for the north east coast is 5.8 which equates to medium/high confidence.

Figure 1 Geological Confidence Line – Laytown Area

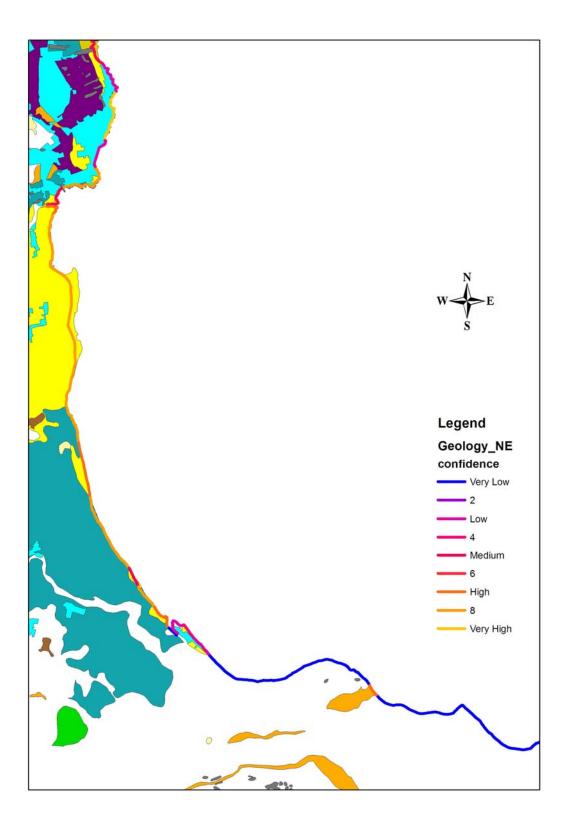
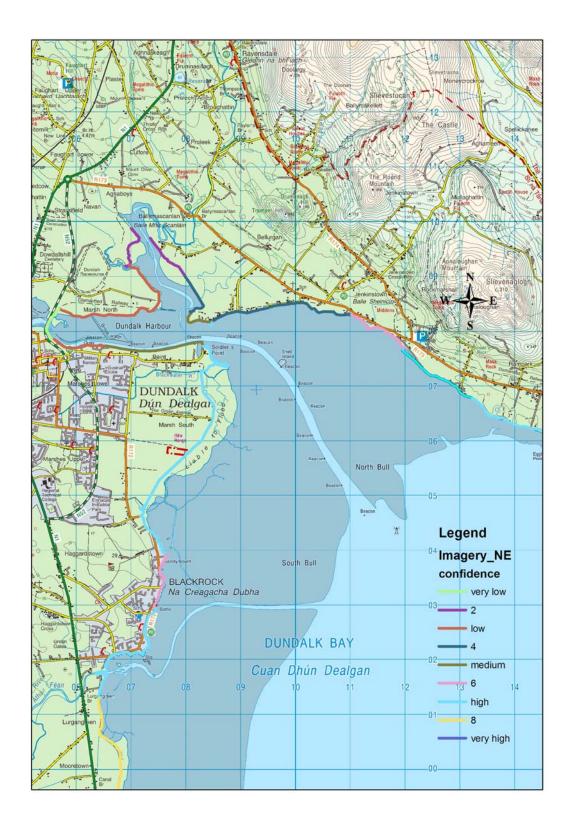


Figure 2 Geological Confidence Line – Annagassan Area



3.2 Accuracy of Imagery

The potential error in the derived annual erosion rates arising from inconsistencies in the geo-referencing of the historic aerial imagery was established by comparing the locations of notable physical features, buildings, roads, railway lines etc. as depicted on the 1970 aerial photographs and recent OSi mapping. GIS techniques were used to compare the positions of key features at intervals along the coast as shown on the most recent OSi large scale digital mapping with the corresponding feature as depicted on the historic aerial photography.

Confidence ratings were assigned to this parameter based on any observed shift in position of the reference features used with a score of 9 representing an error of less than 1m and lower score being assigned for increasing positional error. Imagery confidence ratings of greater than 6 were assigned to approximately 89% of the north east coastline using this procedure, with the mean score being 7 indicating a high degree of confidence in the geo-referencing overall. The areas of poorest geo-referencing accuracy (<4) are located within Dundalk Harbour, as shown in Figure 3 and in the area of Balleally landfill where there was little or no overlap in the coverage of the aerial photography and hence edge distortion was significant.

3.3 **Resolution of Assessment**

Whilst generally being undertaken at a resolution consistent with that of a strategic level assessment (circa 1 km intervals) the actual spacing of the assessment points varied depending on the spatial variation in the observed rate of coastal change and coastal form. GIS spatial analysis tools were used to calculate the length of each coastline segment used in the original erosion analysis and to assign an appropriate confidence rating.

Where assessment points were less than 100m apart, a high confidence rating (9) was assigned, whilst in areas where the assessment points were greater than 3,000m apart a low confidence rating (1) was assigned. All other areas were awarded confidence ratings between 8 and 2 depending on the actual spacing of the analysis points as shown in Table 1.

Confidence Score	Spacing
9	<100
8	100-250m
7	250-500m
6	500-750m
5	750-1,250m
4	1,250-1,500m
3	1,500-2,000m
2	2,000-5,000m
1	>5000m

Table 1: Resolution Confidence Ratings

An example of the contents of the resulting GIS attribute table for the section of coastline between Balbriggan and Mornington, Co Meath is shown as Figure 4 below with the corresponding Resolution Confidence Line shown graphically in Figure 5.

▦	Select	ted Attribut	tes of Resoluti	on_NE
	FID	Shape *	LENGTH	certainty
	104	Polyline	2867.437522	2
ĺ	105	Polyline	399.823476	7
		Polyline	2117.077057	2
		Polyline	662.94614	6
		Polyline	528.697041	6
		Polyline	521.354852	6
	110	Polyline	509.121938	6
		Polyline	39.211971	9
	186	Polyline	55.959818	9
Ì		Polyline	1495.720597	4
ĺ		Polyline	177.010423	8
f		Polyline	210.241118	8
Î		Polyline	280.278455	7
ī		Polyline	617.069878	6
		Polyline	920.670115	5
		Polyline	824.107635	5
		Polyline	441.821122	7
		Polyline	234.072605	8
		Polyline	958.0951	5
l		Polyline	716.155774	6
ĺ			112.15078	8
		Polyline	1706.817619	3
		Polyline		
		Polyline	563.884586	6
		Polyline	188.778099	8
		Polyline	224.721783	8
		Polyline	109.700753	8
		Polyline	375.91827	7
1		Polyline	276.106866	7
		Polyline	449.215633	7
		Polyline	240.571892	8
	374	Polyline	112.36024	8
	375	Polyline	211.651713	8
ĺ	376	Polyline	196.282634	8
	377	Polyline	354.114391	7
	378	Polyline	73.072212	9
	379	Polyline	131.75382	8
		Polyline	320.232319	7
		Polyline	195.2052	8
		Polyline	224.935232	8
		Polyline	337.76343	7
		Polyline	171.652168	
		Polyline	198.856553	8
		Polyline	653.959561	6
		. olymno	000.000001	
	Re	cord: 🚺 🖣	1	Show:

Figure 4 Resolution Confidence Values – Co Meath

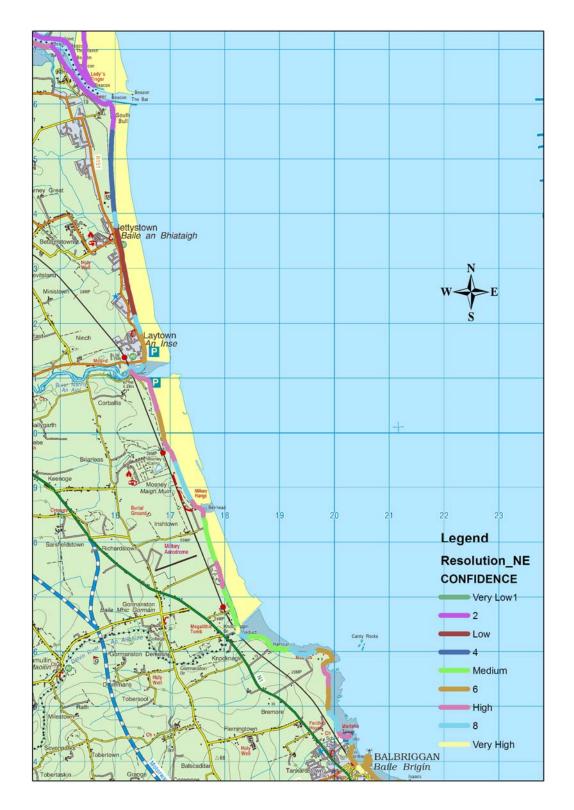
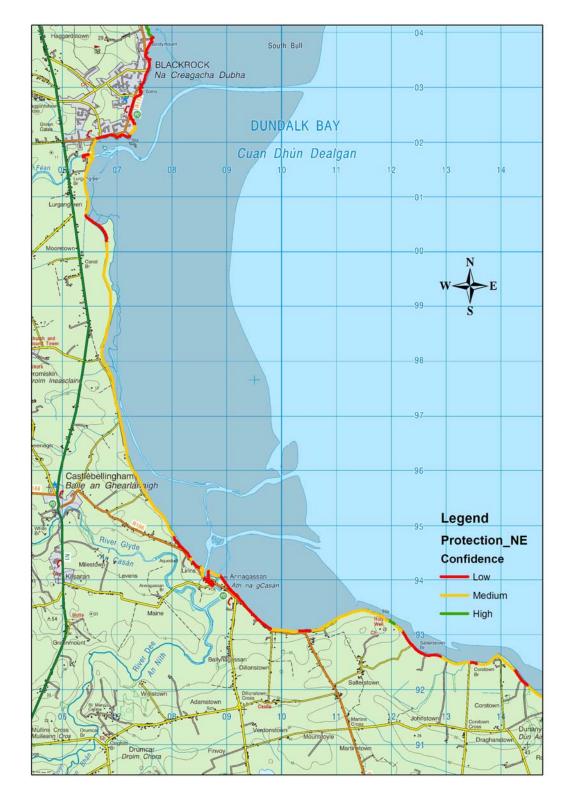


Figure 5 Resolution Confidence Line – Laytown Co Meath

Approximately 57% of the north east coast was assessed using line segments of greater than 1km in length and was therefore assigned a low resolution confidence rating. However the areas containing the longer sections of coastline are generally located within sheltered inlets and harbours where erosion is not a significant issue.

The overall mean assessment interval for the north east coast was 663m which is in line with the target resolution for a strategic study. The mean resolution confidence rating for the north east coast was 6.55 which equates to a medium/high confidence.

3.4 **Protection Status of the Coast**


The potential impact of the natural coastal form and coastal protection structures on the results of the erosion confidence analysis was assessed by reference to the plan aerial photography, both historic and recent, and also by reference to the Coast of Ireland, Oblique Imagery Survey of 2003

For areas of the coast that were shown to be protected in any of these aerial photography surveys, a low confidence rating (2) was assigned. (Refer Figure 6 and Figure 7).

Figure 6 Typical Protected Area of Coast from 2003 Oblique Imagery Survey (Annagassan)

Conversely where examination of these aerial photography surveys indicated a predominately rocky coastline, (Refer Figure 8 and Figure 9), a high confidence rating (8) was assigned.

Figure 8 Typical Area of Rocky Coastline from 2003 Oblique Imagery Survey (Clogher Head)

All other areas of the coast (un-protected soft coastline) were assigned a medium confidence rating (5). Classification of the coastline in terms of the potential for erosion resistance resulted in 45% of the coast being assigned a low confidence rating due to the presence of extensive coastal protection works or other structures while 13% was given a high confidence rating due to the fact that the coast comprised erosion resistant rock. Thus some 55% of the north east coastline was deemed to be unprotected and therefore the methodology adopted to establish the erosion potential could be considered to have reasonable accuracy.

4.0 Results of Combined Confidence

With all four confidence parameter ratings transcribed to individual lines, the combined confidence for the entire north east coast could be established. Weightings were assigned to each of the confidence parameters; 1 for Underlying 'Geology', 1 for 'Resolution' of Assessment, 1 for geo-referencing of the historic images and 2 for the 'Protection Status of the Coastline'. These weightings were assigned on the basis of the perceived potential size of the error likely to be produced in the predicted erosion lines due to inaccuracies in each parameter.

The four separate confidence lines ('Geology', 'Imagery', 'Resolution', 'Protection') whilst based on the same initial GIS baseline were divided into different numbers of segments following the individual confidence assessments. This anomaly in the make up of the individual confidence lines resulted from the insertion of break points as required along the coast where the confidence rating of the parameter under consideration changed. In order to combine the three individual confidence lines into one overall confidence line, each individual confidence line had to contain the same number and distribution of segments.

Thus the 'Protection' confidence line, was first sub-divided into 5m length segments with further breaks created at all direction change nodes and line end nodes. Each 5m segment was assigned the appropriate confidence rating from the original 'Protection' confidence line to form the basis of the overall Erosion Confidence line. Spatial joins were then carried out within GIS between the 'Geology' 'Imagery' and 'Resolution' confidence lines and the sub-divided 'Protection' confidence line using proximity based techniques to transfer the appropriate 'Geology' 'Imagery' and 'Resolution' confidence rating to a new attribute for each section of the Erosion Confidence line. This technique effectively transferred the closest confidence rating from each of the individual confidence lines to each segment of the overall erosion confidence line.

To ensure that the spatial joins had worked correctly the relevant attribute of the overall line was plotted against the original confidence line using GIS and the ratings compared along the entire length of the coast. The attribute table of the overall erosion confidence line was therefore populated with confidence ratings from all three parameters at approximately 5m intervals along the entire north east coast. A random sample from the overall erosion confidence shapefile is presented in Figure 10 where the columns headed RES_CONF, GEO_CONF, IMG_CONF and PRO_CONF contain the individual confidence ratings assigned to the 'Resolution', 'Geology', 'Imagery' and 'Protection' parameters respectively.

FID	Shape *	RES_CONF	GEO_CONF	PRO_CONF	IMG_CONF	LENGTH	Confidence	Percentage	CONF_LEVEL
0	Polyline	3	8	8	8	5	14.56	81	High
1	Polyline	2	6	8	8	5	13.62	76	High
2	Polyline	7	1	8	8	5	13.91	77	High
3	Polyline	7	1	2	8	5	9.88	55	Medium
4	Polyline	7	1	2	8	5	9.88	55	Medium
5	Polyline	7	1	2	8	5	9.88	55	Medium
6	Polyline	7	1	2	8	5	9.88	55	Medium
7	Polyline	7	1	2	8	5	9.88	55	Medium
8	Polyline	7	1	2	8	5	9.88	55	Medium
9	Polyline	7	1	2	8	5	9.88	55	Medium
10	Polyline	7	1	2	8	5	9.88	55	Medium
11	Polyline	7	1	2	8	5	9.88	55	Medium
12	Polyline	7	1	2	8	5	9.88	55	Medium
13	Polyline	7	1	2	8	5	9.88	55	Medium
14	Polyline	7	1	2	8	5	9.88	55	Medium
15	Polyline	7	1	2	8	5	9.88	55	Medium
16	Polyline	7	1	2	8	5	9.88	55	Medium
17	Polyline	7	1	2	8	5	9.88	55	Medium
18	Polyline	7	1	2	8	5	9.88	55	Medium
19	Polyline	7	1	2	8	5	9.88	55	Medium
20	Polyline	7	1	2	8	5	9.88	55	Medium
21	Polyline	7	1	2	8	5	9.88	55	Medium
22	Polyline	7	1	2	8	5	9.88	55	Medium
23	Polyline	7	1	2	8	5	9.88	55	Medium
24	Polyline	7	1	2	8	5	9.88	55	Medium
25	Polyline	7	1	2	8	5	9.88	55	Medium
26	Polyline	7	1	2	8	5	9.88	55	Medium
27	Polyline	7	1	2	8	5	9.88	55	Medium
28	Polyline	7	1	2	8	5	9.88	55	Medium
29	Polyline	7	1	2	8	5	9.88	55	Medium
30	Polyline	7	1	2	8	5	9.88	55	Medium
31	Polyline	7	1	2	8	5	9.88	55	Medium
32	Polyline	7	1	2	8	5	9.88	55	Medium
33	Polyline	7	1	2	8	5	9.88	55	Medium
34	Polyline	7	1	2	8	5	9.88	55	Medium
35	Polyline	7	1	2	8	5	9.88	55	Medium
36	Polyline	7	1	2	8	5	9.88	55	Medium
37	Polyline	7	1	2	8	5	9.88	55	Medium
38	Polyline	7	1	2	8	5	9.88	55	Medium
39	Polyline	7	1	2	8	5	9.88		Medium
	Polyline	7	1	2	8	5	9.88		
41	-	7	1	2	8	5	9.88	55	
42	Polyline	7	1	2	8	5	9.88	55	Medium
43	Polyline	7	1	2	8	5	9.88		Medium
	Polyline	7	1	2	8	5	9.88		Medium
	Polyline	7	1	2	8	5	9.88		Medium
	Polyline	7	1	2	8	5	9.88		Medium
	Polyline	7	1	2	8	5	9.88		Medium
	Polyline	7	1	2	8	5	9.88		Medium
	Polyline	2	1	2	6	5	6.26		Very Low
	Polyline	2	1	2	8	5	7.85	44	Low
51	Polyline	2	1	2	8	5	7.85	44	Low
52	Polyline	2	1	2	8	5	7.85		Low
53	Polyline	2	1	2	8	5	7.85	44	Low

Figure 10	Sample of Overall Confidence Rating	Attribute Table
		<i>,</i> , , , , , , , , , , , , , , , , , ,

The confidence ratings at each point were subsequently weighted and combined to give a final overall confidence Sum Total value for each line segment. The formula used to weight and combine the individual confidence ratings was as follows;

$$C_{OVERALL} = \sqrt{C_{IMAGERY}^2 + 2C_{PROTECTION}^2 + C_{GEOLOGY}^2 + C_{RESOLUTION}^2}$$

The resulting potential combined confidence ratings after scaling lay in the range 2 (all individual confidences scores 1) to 18 (all individual confidence scores 9). The combined confidence ratings for each line segment were then converted to a percentage of the possible maximum score before being classified into one of 5 groupings, Very High, High, Medium, Low or Very Low as shown in Table 2.

Confidence	Range
Very High	>85%
High	70-85%
Medium	55-70%
Low	40-55%
Very Low	<40%

 Table 2: Overall Confidence Ratings

The percentage bands listed above are different from those used for the flooding confidence analysis however this is a function of different parameter scorings and weighting used in the two analyses. The actual percentage bands were selected to give what was considered a realistic distribution of confidence class along the north east coast and for consistency with the results of the erosion confidence analysis for the SE coast.

The overall confidence rating for each segment of the coast calculated using the equation outlined above is contained in the column headed "Confidence" in Figure 10, while the resulting overall percentage score and confidence class are in the columns headed "Percentage" and "CONF_LEVEL" respectively.

Statistical analysis of the distribution of overall confidence ratings along the north east coast indicates that the mean confidence rating for the erosion assessment of the north east coastline between Omeath and Dalkey was 61% i.e. Medium Confidence. Approximately 2% of the coastline was assigned a very high overall confidence rating while 6% was assigned a very low overall confidence rating. Inspection of the distribution of sections of the coastline with very low overall confidence ratings indicates that the majority of these are located in areas where coastal protection structures were observed to be present or where there was no information on geology available.

5.0 Conclusions

The confidence analysis methodology used to assign confidence to the erosion lines has been tested and modified to produce the optimum analysis for this strategic project. It involves the combination of qualitative and quantitative information into one overall quantitative database. The results are presented in the form of an overall confidence rating for the erosion analysis of the north east coast at approximately 5m resolution. The methodology which is based on scoring and weighting confidence in individual parameters likely to impact on the accuracy of the erosion assessment has established whether confidence in the erosion extent determination is very high, high, medium, low or very low based on four principal parameters; i.e. Underlying 'Geology', 'Accuracy' of the historic imagery, 'Resolution' of the Assessment and 'Protection' status of the coast.

All sectors of the overall erosion confidence line have been assigned a confidence rating. Very high confidence was represented by a score of over 85%, with high confidence between 70-85%, medium confidence between 55-70%, low confidence between 40-55% and very low confidence being represented by a result of less than 40%. Overall the analysis indicates that there is generally a medium level of confidence in the position of the erosion lines identified for the north east coast. There are however some localised areas where the analysis has identified a very low confidence generally as a result of the presence of coastal protection works or lack of information on underlying geology. The principal areas of very low confidence in the erosion assessment are; Dundalk Harbour, Balleally Landfill, Howth Harbour, Clontarf, and Dun Laoghaire Harbour.

The final erosion lines with assigned confidence for the entire north east coast are shown on the erosion maps presented in Appendix 9 of the main report. Digital copies of these are also appended to the main report.

As this methodology requires assigning quantitative values to what is in many cases essentially qualitative data, the results may be subject to variations in user's interpretation. It is difficult to fully assess the impact of variations in interpretation on the reliability of the current methodology, however any such impact has been at least partially mitigated by ensuring that the same personnel have undertaken the assessment for all areas of the coast.

