INTRODUCTION

The details within this section are valid for a range of timber frame wall thicknesses. Details are given for the junctions with a range of roof, ground floor and internal floor types, as well as at external wall apes.

A variety of structural forms can be adopted, with variables such as stud centres, double or single head plates. The form of structure influences thermal performance, and must be taken into account when using these details.

Insulation thicknesses for the main elements have not been provided as these depend on the thermal properties of the materials chosen together with the proposed U-value. Further variables are insulation and sheathing types, plasterboard type and thickness, internal linings and external cladding. Details are shown with a masonry outer leaf for simplification. Other cladding may be used without loss of thermal performance or increased technical risk subject to suitable detail. All materials and workmanship are to be installed to Technical Guidance Document D "Materials and workmanship".

These diagrams illustrate good practice for design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. Other issues are not considered fully. The guidance must be implemented with due regard to all other Building Regulations requirements.

Where these details are used for the Target U Values and constructions described in Table D4 of TGD L 2011 the psi values published in Table D4 may be used to calculate the actual Thermal Bridging heat loss for a dwelling for the key thermal bridging junctions in that dwelling.
Table D4: Target U-Values

<table>
<thead>
<tr>
<th>Junction detail identifier</th>
<th>Section 4 - Timber Frame Construction</th>
<th>Target U-Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$0.21 \text{ W/m}^2\text{K}$ U-value, Insulation between studs 1,4 (roof $U = 0.16$) (floor $U = 0.21$)</td>
</tr>
<tr>
<td>4.01 Ground Floor - Insulation above slab.</td>
<td>0.051</td>
<td>0.021</td>
</tr>
<tr>
<td>4.02 Ground Floor - Insulation below slab.</td>
<td>0.205</td>
<td>0.125</td>
</tr>
<tr>
<td>4.03 Timber Suspended Ground Floor</td>
<td>0.063</td>
<td>0.046</td>
</tr>
<tr>
<td>4.04.1 Corner</td>
<td>0.062</td>
<td>0.030</td>
</tr>
<tr>
<td>4.04.2 Inverted Corner</td>
<td>-0.004</td>
<td>-0.015</td>
</tr>
<tr>
<td>4.05 Timber Intermediate Floor within a dwelling</td>
<td>0.130</td>
<td>0.080</td>
</tr>
<tr>
<td>4.05a Timber Separating floor between dwellings</td>
<td>0.193</td>
<td>0.132</td>
</tr>
<tr>
<td>4.06 Separating Wall (plan)</td>
<td>0.087</td>
<td>0.079</td>
</tr>
<tr>
<td>4.07 Separating Wall (section)</td>
<td>0.236</td>
<td>0.236</td>
</tr>
<tr>
<td>4.08 Partition Wall</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>4.09/4.10 Eaves - Unventilated/Ventilated roof space</td>
<td>0.082</td>
<td>0.044</td>
</tr>
<tr>
<td>4.11/4.12.1 Eaves - Insulation between and under rafters - Unventilated/Ventilated rafter void - Dormer</td>
<td>0.054</td>
<td>0.039</td>
</tr>
<tr>
<td>4.12.2 Eaves - Insulation between and under rafters - Unventilated/Ventilated rafter void - Pitched ceiling Dormer</td>
<td>0.014</td>
<td>0.013</td>
</tr>
<tr>
<td>4.13.1 Eaves - Ventilated - Insulation between and under rafters - Pitched ceiling</td>
<td>0.075</td>
<td>0.040</td>
</tr>
<tr>
<td>4.13.2 Pitched ceiling/insulation on flat</td>
<td>0.036</td>
<td>0.021</td>
</tr>
<tr>
<td>4.14 Eaves - Ventilated - Insulation between and over rafters</td>
<td>0.064</td>
<td>0.031</td>
</tr>
<tr>
<td>4.15 Ventilated roof - Attic floor level</td>
<td>0.081</td>
<td>0.051</td>
</tr>
<tr>
<td>4.16/4.17 Gable - Insulation between and under rafters - Unventilated/Ventilated rafter void</td>
<td>0.068</td>
<td>0.024</td>
</tr>
<tr>
<td>4.18 Gable - Insulation between and over rafters - Unventilated rafter void</td>
<td>0.062</td>
<td>0.037</td>
</tr>
<tr>
<td>4.19 Flat Roof - Parapet</td>
<td>0.041</td>
<td>0.046</td>
</tr>
<tr>
<td>4.20 Ope - Lintel</td>
<td>0.144</td>
<td>0.084</td>
</tr>
<tr>
<td>4.21 Ope - Jamb</td>
<td>0.064</td>
<td>0.043</td>
</tr>
<tr>
<td>4.22 Ope - Sill</td>
<td>0.048</td>
<td>0.034</td>
</tr>
<tr>
<td>4.23.1 Timber Frame Separating Wall through ground floor</td>
<td>0.118</td>
<td>0.149</td>
</tr>
<tr>
<td>4.23.2 Timber Frame Partition Wall through ground floor</td>
<td>0.074</td>
<td>0.096</td>
</tr>
<tr>
<td>Section G General Details</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G.01.1 Masonary Separating Wall Head - Section 6</td>
<td>0.511</td>
<td>0.484</td>
</tr>
<tr>
<td>G.01.2 Masonary Separating Wall Head - Section 6</td>
<td>0.484</td>
<td>0.458</td>
</tr>
<tr>
<td>G.05.1 Solid Masonary Separating Wall through ground floor</td>
<td>0.201</td>
<td>0.240</td>
</tr>
<tr>
<td>Other Details</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.8.1 Balcony within dwelling 9</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>6.8.2 Balcony between dwelling 9,11</td>
<td>0.020</td>
<td>0.020</td>
</tr>
</tbody>
</table>

1. ψ values for a Target U-value for the wall of $0.21 \text{ W/m}^2\text{K}$ can be used for a range of U-values down to $0.18 \text{ W/m}^2\text{K}$ for the construction type specified. The U-values of the skirting elements to the wall can vary from the skirting element target U-value as follows: Pitched roof insulation on slope, insulation on ceiling $= 0.13$ to $0.16 \text{ W/m}^2\text{K}$; Flat Roof $= 0.16$ to $0.2 \text{ W/m}^2\text{K}$; Ground Floor $= 0.16$ to $0.21 \text{ W/m}^2\text{K}$.

2. ψ values for a Target U-value for the wall of $0.15 \text{ W/m}^2\text{K}$ can be used for a range of U-values from of $0.12 \text{ W/m}^2\text{K}$ to $0.17 \text{ W/m}^2\text{K}$ for the construction type specified. The U-values of the skirting elements to the wall can vary from the skirting element target U-value as follows: Pitched roof insulation on slope, insulation on ceiling $= 0.11$ to $0.16 \text{ W/m}^2\text{K}$; Flat Roof $= 0.11$ to $0.17 \text{ W/m}^2\text{K}$; Ground Floor $= 0.12$ to 0.18.

3. Where two building elements have one U-value above its target while the other is below its target U-value, the aggregate percentage change from the respective target U-values in the table should not exceed $+20\%$ for the Psi (ψ) value to be valid, i.e. if for the 0.15 U-value wall, if the U-value was increased by 10% above the wall target U-value (from 0.15 to 0.165), then the roof U-value could be at most 10% below the roof target U-value (from 0.14 to 0.126), because the aggregate change would then be 20%.

4. This is an externally supported balcony (the balcony slab is not a continuation of the floorslab) where the wall insulation is continuous and not bridged by the balcony slab.

5. Value of Ψ is applied to each dwelling.

6. Psi value is for whole junction. Half the value should be applied to each dwelling on either side of the junction.
THERMAL PERFORMANCE

- Floor insulation must tightly abut sole plate inner face

GENERAL NOTES

- If sole plates are packed to level, ensure any gaps are sealed
- To improve air tightness, ensure sole plate DPC turns up behind and laps with vertical vapour control layer/vapour control plasterboard
- Detail applicable: Ground-bearing floor; raft foundation; in-situ suspended ground floor slab; pre-cast suspended ground floor. Insulation above slab, with timber floor finish

AIR BARRIER - CONTINUITY

- Seal between wall and floor air barrier OR seal gap between skirting board and floor using a flexible sealant
- Seal all penetrations through air barrier using a flexible sealant or tape

AIR BARRIER - OPTIONS

- Internal lining, for example, plasterboard, or
- Airtightness membrane and tapes

Complying with checklist will help achieve design air permeability
THERMAL PERFORMANCE

CHECKLIST (TICK ALL)

- Floor slab perimeter insulation to have a min. R-value of 1.14 m² K/W
- Floor insulation must tightly abut concrete block inner face

GENERAL NOTES

If sole plates are packed to level, ensure any gaps are sealed. To improve air tightness, ensure sole plate DPC turns up behind and laps with vertical vapour control layer/vapour control plasterboard. Detail applicable: Ground-bearing floor; Insulation below slab.

AIR BARRIER - CONTINUITY

CHECKLIST (TICK ALL)

- Seal between wall and floor air barrier OR seal gap between skirting board and floor using a flexible sealant.
- Seal all penetrations through air barrier using a flexible sealant or tape.

Complying with checklist will help achieve design air permeability.

OPTION (TICK ONE)

AIR BARRIER - OPTIONS

- Internal lining, for example, plasterboard, or
- Airtightness membrane and tapes

ACCEPTABLE CONSTRUCTION DETAIL

Ground Floor - Insulation below slab

DETAIL 4.02, 2011
If installing compressible insulation, ensure full insulation depth between joists.

Ensure insulation is in contact with underside of timber flooring.

Seal between wall and floor air barrier, OR seal gap between skirting board and floor with a flexible sealant.

Seal joints in timber floor with suitable glue. Fully support and fix any square edge joints in the decking to the joists.

Seal all penetrations through air barrier using a flexible sealant or tape.

Complying with checklist will help achieve design air permeability.

GENERAL NOTES

If installing compressible insulation, ensure full insulation depth between joists.

AIR BARRIER - OPTIONS

- Internal lining, for example, plasterboard, or
- Airtightness membrane and tapes

An effective vapour control layer may act as an airtightness membrane.
THERMAL PERFORMANCE CHECKLIST (TICK ALL)

Ensure insulation is tucked into corners

AIR BARRIER - CONTINUITY CHECKLIST (TICK ALL)

- Seal all penetrations through air barrier using a flexible sealant or tape

GENERAL NOTES

Install cavity barriers as required

Provision of service cavity inside air barrier line will facilitate reduction in number of service penetrations through air barrier

OPTION (TICK ONE) AIR BARRIER - OPTIONS

- Internal lining, for example, plasterboard, or
- Airtightness membrane and tapes
THERMAL PERFORMANCE
CHECKLIST (TICK ALL)

- Install insulation with min. R-value of 3.50 m² K/W between joists

AIR BARRIER - CONTINUITY
CHECKLIST (TICK ALL)

- Seal gap between skirting board and floor with a flexible sealant
- Dotted blue line is notional, to depict air barrier continuity through floor zone, e.g., solid nogging or header joist. (If outside structure, use breathable membrane)
- Seal all penetrations through air barrier using a flexible sealant or tape

GENERAL NOTES

- Install cavity barriers as required
- Provision of service cavity inside air barrier line will facilitate reduction in number of service penetrations through air barrier

OPTION (TICK ONE)

- **AIR BARRIER - OPTIONS**
 - Internal lining, for example, plasterboard, or
 - Airtightness membrane and tapes

ACCEPTABLE CONSTRUCTION DETAIL

Timber Intermediate Floor within a Dwelling

DETAIL 4.05, 2011
THERMAL PERFORMANCE

CHECKLIST (TICK ALL)

Install insulation with min. R-value of 3.50 m² K/W between joists

Masonry outer leaf

AIR BARRIER - CONTINUITY

CHECKLIST (TICK ALL)

☐ Seal gap between skirting board and floor with a flexible sealant

☐ Seal all penetrations through air barrier using a flexible sealant or tape

Complying with checklist will help achieve design air permeability

GENERAL NOTES

Install cavity barriers as required

Provision of service cavity inside air barrier line will facilitate reduction in number of service penetrations through air barrier

See Part E for sound requirements.

See Part B for fire requirements.

OPTION (TICK ONE) AIR BARRIER - OPTIONS

☐ Internal lining, for example, plasterboard, or

☐ Airtightness membrane and tapes
THERMAL PERFORMANCE

CHECKLIST (TICK ALL)

- Ensure insulation is tucked into corner studs

- Pack between external wall studs with suitable firestopping insulation. Min. R-value of 5.23 m² K/W

AIR BARRIER - CONTINUITY

CHECKLIST (TICK ALL)

- Ensure air barrier continuity between internal linings at corners

- Seal all penetrations through air barrier using a flexible sealant or tape

GENERAL NOTES

Install cavity barriers as required. Use appropriate material where cavity barrier or full-fill insulation is employed.

Provision of service cavity inside air barrier line will facilitate reduction in number of service penetrations through air barrier.

See TGD-B for guidance on fire safety and TGD-E for guidance on sound insulation.

Read this detail in conjunction with detail 4.07, Separating Wall (section).

OPTION (TICK ONE) - AIR BARRIER - OPTIONS

- Internal lining, for example, plasterboard, or

- Airtightness membrane and tapes

ACCEPTABLE CONSTRUCTION DETAIL

Separating Wall (plan)
THERMAL PERFORMANCE CHECKLIST (TICK ALL)

- Ensure full depth of insulation between, over (or below) joists extends to wall face
- Pack compressible insulation between last truss/ joist and separating wall. Min. R-value of 1.10 m² K/W
- Pack compressible firestopping insulation between wall head members. Min. R-value of 2.50 m² K/W

AIR BARRIER - CONTINUITY CHECKLIST (TICK ALL)

- Seal all penetrations through air barrier using a flexible sealant or tape
- Ensure air barrier continuity between ceiling and wall linings

GENERAL NOTES

- Install cavity barriers as required
- See TGD-B for guidance on fire safety and TGD-E for guidance on sound insulation
- Read this detail in conjunction with detail 4.06, Separating Wall (plan)

AIR BARRIER - OPTIONS

- Internal lining, for example, plasterboard, or
- Airtightness membrane and tapes
Complying with checklist qualifies builder to claim value in Table 3 of IP 1/06 and Table K1 of DEAP 2006.

Ensure insulation is tucked into corner.

Seal all penetrations through air barrier using a flexible sealant or tape.

Dotted blue line is notional, to depict air barrier continuity through partition zone, e.g., timber stud.

Complying with checklist will help achieve design air permeability.

General Notes:
Read this detail in conjunction with detail G-03, Partition Wall (head).
Provision of service cavity inside air barrier line will facilitate reduction in number of service penetrations through air barrier.

Acceptable Construction Detail:

Air Barrier - Options:
- Internal lining, for example, plasterboard, or
- Airtightness membrane and tapes

An effective vapour control layer may act as an airtightness membrane.
THERMAL PERFORMANCE

CHECKLIST
(TICK ALL)

Ensure continuity of insulation throughout junction

Ensure full depth of insulation between and over joists abuts eaves insulation

Ensure gap between wall plate and proprietary eaves guard is completely filled with insulation having a min. R-value across the insulation thickness of 2.00 m² K/W

AIR BARRIER - CONTINUITY

CHECKLIST
(TICK ALL)

Seal all penetrations through air barrier using a flexible sealant or tape

Ensure air barrier continuity between ceiling and wall linings

GENERAL NOTES

Use of over joist insulation is considered best practice, as it eliminates the cold bridge caused by the joist

Use proprietary eaves ventilator to ensure ventilation in accordance with BS5250

Use vapour permeable roof underlay in strict accordance with third party certification

Eaves insulation must not hinder free water drainage below tiling battens

Install cavity barriers as required

Read this detail in conjunction with detail 4-15, Gable - Attic Floor Level

ACCEPTABLE CONSTRUCTION DETAIL

Eaves - Unventilated Roof Space

DETAIL 4.09, 2011
THERMAL PERFORMANCE

CHECKLIST (TICK ALL)

- Ensure continuity of insulation throughout junction
- Ensure full depth of insulation between and over joists abuts eaves insulation
- Ensure gap between wall plate and proprietary eaves vent is completely filled with insulation having a min. R-value across the insulation thickness of 2.00 m² K/W

AIR BARRIER - CONTINUITY

CHECKLIST (TICK ALL)

- Seal all penetrations through air barrier using a flexible sealant or tape
- Ensure air barrier continuity between ceiling and wall linings

GENERAL NOTES

Thermal performance of junction can be improved by incorporating an eaves wind barrier (plywood, OSB, softboard or other suitable material) around insulation to be sealed to connect with the ventilator strip thereby mitigating wind chill from the vent inlet in the eaves.

Use of over joist insulation is considered best practice, as it eliminates the cold bridge caused by the joist.

Use a proprietary eaves ventilator to ensure ventilation in accordance with BS5250. Installation of the eaves ventilator must not prevent free water drainage below the tiling battens.

Install cavity barriers as required.

Read this detail in conjunction with detail 4.15, Gable - Attic Floor Level.

OPTION (TICK ONE)

AIR BARRIER - OPTIONS

- Internal lining, for example, plasterboard, or
- Airtightness membrane and tapes
THERMAL PERFORMANCE CHECKLIST (TICK ALL)

- Ensure continuity of insulation throughout junction
- Ensure insulation is installed tightly between rafters and is in contact with under-rafter insulation
- Ensure full depth of insulation between and over joists abuts eaves insulation
- Ensure gap between wall plate and proprietary eaves vent is completely filled with insulation having a min. R-value across the insulation thickness of 3.90 m² K/W

AIR BARRIER - CONTINUITY CHECKLIST (TICK ALL)

- Install full depth timber nogging between floor joists, and seal between nogging, ceiling and upper stud wall with a flexible sealant. (Dotted blue line is optional, to depict air barrier continuity through noggings.)
- Ensure air barrier continuity between ceiling and wall linings
- Seal all penetrations through air barrier using a flexible sealant or tape

GENERAL NOTES

Thermal performance of junction can be improved by incorporating an eaves wind barrier (plywood, OSB, softboard or other suitable material) around insulation to be sealed to connect with the ventilator strip thereby mitigating wind chill from the vent inlet in the eaves.

If required by BS5250, use vapour control plasterboard or separate vapour control layer behind plasterboard.

Use proprietary eaves ventilator to ensure ventilation in accordance with BS5250. Installation of eaves ventilator must not prevent free water drainage below tiling battens.

Use of over joist and under rafter insulation is considered best practice, as it eliminates the cold bridge caused by the joist/rafter.

Install cavity barriers as required.

Read this detail in conjunction with details 4-15, Gable - Attic Floor Level, and 4-16, Gable - Insulation between and under rafters - Ventilated Rafter Void.

OPTION (TICK ONE)

AIR BARRIER - OPTIONS

- Internal lining, for example, plasterboard, or
- Airtightness membrane and tapes
Eaves - Insulation between and under rafters - Unventilated Rafter Void - Dormer

THERMAL PERFORMANCE CHECKLIST (TICK ALL)

- Ensure continuity of insulation throughout junction
- Ensure insulation is installed tightly between rafters and is in contact with under-rafter insulation
- Ensure full depth of insulation between and over joists abuts eaves insulation
- Ensure gap between wall plate and proprietary eaves guard is completely filled with insulation having a min. R-value across the insulation thickness of 3.90 m² K/W

AIR BARRIER - CONTINUITY CHECKLIST (TICK ALL)

- Ensure air barrier continuity between ceiling and wall linings
- Install double, full depth timber nogging between floor joists. (Dotted blue line is notional, to depict air barrier continuity through noggings.)
- Seal all penetrations through air barrier using a flexible sealant or tape

GENERAL NOTES

- If required by BS5250, use vapour control plasterboard or separate vapour control layer behind plasterboard.
- Vapour permeable roof underlay to be used in strict accordance with approved third party certification
- Use of over joist and under rafter insulation is considered best practice, as it eliminates the cold bridge caused by the joist/rafter
- Eaves insulation must not hinder free water drainage below tiling battens
- Install cavity barriers as required
- Read this detail in conjunction with details 4-15, Gable - Attic floor level, and 4-17, Gable - Insulation between and under rafters - Unventilated Rafter Void

ACCEPTABLE CONSTRUCTION DETAIL

AIR BARRIER - OPTIONS

- Internal lining, for example, plasterboard, or
- Airtightness membrane and tapes
THERMAL PERFORMANCE

- Ensure continuity of insulation throughout junction
- Ensure insulation is installed tightly between rafters and is in contact with under-rafter insulation
- Ensure full depth of insulation between and under rafters abuts eaves insulation
- Ensure gap between wall plate and proprietary eaves vent is completely filled with insulation having a min. R-value across the insulation thickness of 3.00 m² K/W

GENERAL NOTES
Thermal performance of junction can be improved by incorporating an eaves wind barrier (plywood, OSB, softboard or other suitable material) around insulation to be sealed to connect with the ventilator strip thereby mitigating wind chill from the ventilator strip in the eaves.

Use a proprietary eaves ventilator to ensure ventilation in accordance with BS5250. Installation of eaves ventilator must not prevent free water drainage below tiling battens if required by BS5250, use vapour control plasterboard or separate vapour control layer behind plasterboard.

Use of over joist and under rafter insulation is considered best practice, as it eliminates the cold bridge caused by the joist/rafter.

Install cavity barriers as required.

Read this detail in conjunction with details 4-15, Gable - Attic Floor Level, and 4-16, Gable - Insulation between and under rafters - Ventilated Rafters Void.

ACCEPTABLE CONSTRUCTION DETAIL

Eaves - Insulation between and under rafters - Ventilated Rafter Void - Pitched ceiling

DETAIL 4.13.1 + 4.13.2, 2011

AIR BARRIER - CONTINUITY

- Seal all penetrations through air barrier using a flexible sealant or tape
- Ensure air barrier continuity between ceiling and wall linings

Complying with checklist will help achieve design air permeability.

OPTION (TICK ONE)

AIR BARRIER - OPTIONS

- Internal lining, for example, plasterboard, or
- Airtightness membrane and tapes
GENERAL NOTES

Vapour permeable roof underlay to be used in strict accordance with approved third party certification

If required by BS5250, use vapour control plasterboard or separate vapour control layer behind plasterboard.

Use of over rafter insulation is considered best practice, as it eliminates the cold bridge caused by the joist/rafter

Install cavity barriers as required

Read this detail in conjunction with detail 4-18, Gable - Insulation between and over rafters

THERMAL PERFORMANCE CHECKLIST (TICK ALL)

- Ensure continuity of insulation throughout junction
- Ensure insulation is installed tightly between rafters and is in contact with over-rafter insulation
- Ensure full depth of insulation between and over rafters abuts eaves insulation
- Ensure gap between wall plate and over rafter insulation is completely filled with insulation having a min. R-value across the insulation thickness of 3.00 m² K/W

AIR BARRIER - CONTINUITY CHECKLIST (TICK ALL)

- Ensure air barrier continuity between ceiling and wall plasterboard
- Install full depth timber nogging between floor joists. (Dotted blue line is notional, to depict air barrier continuity through noggings.)
- Seal all penetrations through air barrier using a flexible sealant or tape

AIR BARRIER - OPTIONS

- Internal lining, for example, plasterboard, or
- Airtightness membrane and tapes
THERMAL PERFORMANCE

CHECKLIST (TICK ALL)

- Continue wall insulation to a minimum of 250mm over the top of attic insulation.
- Continue attic insulation over head of main wall panel, to sheathing board.
- Ensure full depth of insulation between and over joists extends to inner edge of wall.

AIR BARRIER - CONTINUITY

CHECKLIST (TICK ALL)

- Seal all penetrations through air barrier using a flexible sealant or tape.
- Ensure air barrier continuity between ceiling and wall linings.

GENERAL NOTES

Use of over joist insulation is considered best practice, as it eliminates the cold bridge caused by the joist.

Install cavity barriers as required.

Read this detail in conjunction with details 4-09, Ventilated Attic, or 4-10, Eaves - Unventilated Attic, as appropriate.

OPTION (TICK ONE) AIR BARRIER - OPTIONS

- Internal lining, for example, plasterboard, or
- Airtightness membrane and tapes.
Vapour permeable roof underlay to be used in strict accordance with approved third party certification.

If required by BS5250, use vapour control plasterboard or separate vapour control layer behind plasterboard.

Install cavity barriers as required.

Read this detail in conjunction with detail 4-12, Eaves - Insulation between and under rafters - Unventilated Rafter Void.
Use of under rafter insulation is considered best practice, as it eliminates the cold bridge caused by the rafter. If required by BS 5250, use vapour control plasterboard or separate vapour control layer behind plasterboard.

Install cavity barriers as required.

Read this detail in conjunction with detail 4-11, Eaves - Insulation between and under rafters - Ventilated Rafter Void.

Ensure full depth of insulation between and under rafters extends to wall.

Ensure insulation is installed tightly between rafters and is in contact with under-rafter insulation.

Ensure wall insulation is taken up level with top of wall.

Ensure insulation continuity throughout junction.

Complying with checklist will help achieve design air permeability.

VENTILATION

VENTILATE ROOF IN ACCORDANCE WITH BS 5250

If required by BS 5250, use vapour control plasterboard or separate vapour control layer behind plasterboard.

Use of under rafter insulation is considered best practice, as it eliminates the cold bridge caused by the rafter.

Install cavity barriers as required.

Read this detail in conjunction with detail 4-11, Eaves - Insulation between and under rafters - Ventilated Rafter Void.

--

GABLE - INSULATION BETWEEN AND UNDER RAFTERS - VENTILATED RAFTER VOID

VENTILATION

VENTILATE ROOF IN ACCORDANCE WITH BS 5250

If required by BS 5250, use vapour control plasterboard or separate vapour control layer behind plasterboard.

Use of under rafter insulation is considered best practice, as it eliminates the cold bridge caused by the rafter.

Install cavity barriers as required.

Read this detail in conjunction with detail 4-11, Eaves - Insulation between and under rafters - Ventilated Rafter Void.

VENTILATION

VENTILATE ROOF IN ACCORDANCE WITH BS 5250

If required by BS 5250, use vapour control plasterboard or separate vapour control layer behind plasterboard.

Use of under rafter insulation is considered best practice, as it eliminates the cold bridge caused by the rafter.

Install cavity barriers as required.

Read this detail in conjunction with detail 4-11, Eaves - Insulation between and under rafters - Ventilated Rafter Void.

- Ensure full depth of insulation between and under rafters extends to wall.
- Ensure insulation is installed tightly between rafters and is in contact with under-rafter insulation.
- Ensure wall insulation is taken up level with top of wall.
- Ensure insulation continuity throughout junction.

- Seal all penetrations through air barrier using a flexible sealant or tape.
- Ensure air barrier continuity between ceiling and wall linings.

Complying with checklist will help achieve design air permeability.

VENTILATION

VENTILATE ROOF IN ACCORDANCE WITH BS 5250

If required by BS 5250, use vapour control plasterboard or separate vapour control layer behind plasterboard.

Use of under rafter insulation is considered best practice, as it eliminates the cold bridge caused by the rafter.

Install cavity barriers as required.

Read this detail in conjunction with detail 4-11, Eaves - Insulation between and under rafters - Ventilated Rafter Void.

VENTILATION

VENTILATE ROOF IN ACCORDANCE WITH BS 5250

If required by BS 5250, use vapour control plasterboard or separate vapour control layer behind plasterboard.

Use of under rafter insulation is considered best practice, as it eliminates the cold bridge caused by the rafter.

Install cavity barriers as required.

Read this detail in conjunction with detail 4-11, Eaves - Insulation between and under rafters - Ventilated Rafter Void.

General Notes

Ventilate roof in accordance with BS 5250.

If required by BS 5250, use vapour control plasterboard or separate vapour control layer behind plasterboard.

Use of under rafter insulation is considered best practice, as it eliminates the cold bridge caused by the rafter.

Install cavity barriers as required.

Read this detail in conjunction with detail 4-11, Eaves - Insulation between and under rafters - Ventilated Rafter Void.

- Ensure full depth of insulation between and under rafters extends to wall.
- Ensure insulation is installed tightly between rafters and is in contact with under-rafter insulation.
- Ensure wall insulation is taken up level with top of wall.
- Ensure insulation continuity throughout junction.

- Seal all penetrations through air barrier using a flexible sealant or tape.
- Ensure air barrier continuity between ceiling and wall linings.

Complying with checklist will help achieve design air permeability.

Ventilate roof in accordance with BS 5250.

If required by BS 5250, use vapour control plasterboard or separate vapour control layer behind plasterboard.

Use of under rafter insulation is considered best practice, as it eliminates the cold bridge caused by the rafter.

Install cavity barriers as required.

Read this detail in conjunction with detail 4-11, Eaves - Insulation between and under rafters - Ventilated Rafter Void.

- Ensure full depth of insulation between and under rafters extends to wall.
- Ensure insulation is installed tightly between rafters and is in contact with under-rafter insulation.
- Ensure wall insulation is taken up level with top of wall.
- Ensure insulation continuity throughout junction.

- Seal all penetrations through air barrier using a flexible sealant or tape.
- Ensure air barrier continuity between ceiling and wall linings.

Complying with checklist will help achieve design air permeability.

Ventilate roof in accordance with BS 5250.

If required by BS 5250, use vapour control plasterboard or separate vapour control layer behind plasterboard.

Use of under rafter insulation is considered best practice, as it eliminates the cold bridge caused by the rafter.

Install cavity barriers as required.

Read this detail in conjunction with detail 4-11, Eaves - Insulation between and under rafters - Ventilated Rafter Void.

- Ensure full depth of insulation between and under rafters extends to wall.
- Ensure insulation is installed tightly between rafters and is in contact with under-rafter insulation.
- Ensure wall insulation is taken up level with top of wall.
- Ensure insulation continuity throughout junction.

- Seal all penetrations through air barrier using a flexible sealant or tape.
- Ensure air barrier continuity between ceiling and wall linings.

Complying with checklist will help achieve design air permeability.

Ventilate roof in accordance with BS 5250.

If required by BS 5250, use vapour control plasterboard or separate vapour control layer behind plasterboard.

Use of under rafter insulation is considered best practice, as it eliminates the cold bridge caused by the rafter.

Install cavity barriers as required.

Read this detail in conjunction with detail 4-11, Eaves - Insulation between and under rafters - Ventilated Rafter Void.

- Ensure full depth of insulation between and under rafters extends to wall.
- Ensure insulation is installed tightly between rafters and is in contact with under-rafter insulation.
- Ensure wall insulation is taken up level with top of wall.
- Ensure insulation continuity throughout junction.

- Seal all penetrations through air barrier using a flexible sealant or tape.
- Ensure air barrier continuity between ceiling and wall linings.

Complying with checklist will help achieve design air permeability.

Ventilate roof in accordance with BS 5250.

If required by BS 5250, use vapour control plasterboard or separate vapour control layer behind plasterboard.

Use of under rafter insulation is considered best practice, as it eliminates the cold bridge caused by the rafter.

Install cavity barriers as required.

Read this detail in conjunction with detail 4-11, Eaves - Insulation between and under rafters - Ventilated Rafter Void.

- Ensure full depth of insulation between and under rafters extends to wall.
- Ensure insulation is installed tightly between rafters and is in contact with under-rafter insulation.
- Ensure wall insulation is taken up level with top of wall.
- Ensure insulation continuity throughout junction.

- Seal all penetrations through air barrier using a flexible sealant or tape.
- Ensure air barrier continuity between ceiling and wall linings.

Complying with checklist will help achieve design air permeability.
THERMAL PERFORMANCE CHECKLIST (TICK ALL)

- Min. R-value of 1.09 m² K/W
- Ensure full depth of insulation between and over rafters extends to wall
- Ensure insulation continuity throughout junction
- Ensure insulation is installed tightly between rafters and is in contact with over-rafter insulation
- Ensure wall insulation is taken up level with top of wall

AIR BARRIER - CONTINUITY CHECKLIST (TICK ALL)

- Seal all penetrations through air barrier using a flexible sealant or tape
- Ensure air barrier continuity between ceiling and wall linings

GENERAL NOTES

- Vapour permeable roof underlay to be used in strict accordance with approved third party certification
- If required by BS5250, use vapour control plasterboard or separate vapour control layer behind linings
- Use of over-rafter insulation is considered best practice, as it eliminates the cold bridge caused by the rafter
- Install cavity barriers as required
- Read this detail in conjunction with detail 4-14, Eaves - Insulation between and over rafters

ACCEPTABLE CONSTRUCTION DETAIL

- **Gable - Insulation between and over rafters - Unventilated Rafter Void**

OPTION (TICK ONE)

- **AIR BARRIER - OPTIONS**
 - Internal lining, for example, plasterboard, or
 - Airtightness membrane and tapes
Turn up vapour control layer at edge of roof insulation, lap with roof waterproofing layer, and seal.

BS5250 requires vapour control layer to be installed between deck and insulation.

Install cavity barriers as required.

Ensure wall insulation is installed level with, or above, top of roof insulation.

Ensure roof insulation tightly abuts inner face of parapet wall.

Seal all penetrations through air barrier using a flexible sealant or tape.

Ensure air barrier continuity between ceiling and wall linings.

Internal lining, for example, plasterboard, or

Airtightness membrane and tapes.

An effective vapour control layer may act as an airtightness membrane.

Complying with checklist will help achieve design air permeability.
THERMAL PERFORMANCE

CHECKLIST (TICK ALL)

- Install proprietary cavity closer with thermal resistance path through closer of 1.00 m² K/W or better (Manufacturers' certified data)

AIR BARRIER - CONTINUITY

CHECKLIST (TICK ALL)

- Seal all penetrations through air barrier using a flexible sealant or tape
- Apply external flexible seal around frame
- Apply flexible sealant to interface between plasterboard internal finish, and frame members

Complying with checklist will help achieve design air permeability

GENERAL NOTES

Ensure vapour control layer or vapour control plasterboard is returned into reveal

OPTION (TICK ONE)

AIR BARRIER - OPTIONS

- Internal lining, for example, plasterboard, or
- Airtightness membrane and tapes
<table>
<thead>
<tr>
<th>THERMAL PERFORMANCE CHECKLIST (TICK ALL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install proprietary cavity closer with thermal resistance path through closer of 1.00 m² K/W or better (Manufacturers' certified data)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AIR BARRIER - CONTINUITY CHECKLIST (TICK ALL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Diagram of Ope-Jamb detail] (Tick all steps)</td>
</tr>
<tr>
<td>□ Apply flexible sealant to junction between lining, and frame members</td>
</tr>
<tr>
<td>□ Seal all penetrations through air barrier using a flexible sealant or tape</td>
</tr>
<tr>
<td>□ Apply external flexible seal around frame</td>
</tr>
</tbody>
</table>

Complying with checklist will help achieve design air permeability

<table>
<thead>
<tr>
<th>GENERAL NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensure vapour control layer or vapour control plasterboard is returned into reveal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPTION (TICK ONE)</th>
<th>AIR BARRIER - OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Diagram of Ope-Jamb detail] (Tick one option)</td>
<td></td>
</tr>
<tr>
<td>□ Internal lining, for example, plasterboard, or</td>
<td></td>
</tr>
<tr>
<td>□ Airtightness membrane and tapes</td>
<td></td>
</tr>
</tbody>
</table>
Apply flexible sealant to junction between lining and windowboard, and between windowboard and frame.

Ensure insulation brought tight to underside of cill plate.

Ensure vapour control layer or vapour control plasterboard is returned into reveal.

Air barrier options:
- Internal lining, for example, plasterboard, or airtightness membrane and tapes.

Complying with the checklist will help achieve design air permeability.
THERMAL PERFORMANCE
CHECKLIST
(TICK ALL)

Edge insulation to have a minimum
R-value of 1.14 m²K/W

AIR BARRIER - CONTINUITY
CHECKLIST
(TICK ALL)

Complying with checklist will help achieve design air permeability

GENERAL NOTES
See TGD-B for guidance on fire safety and TGD-E for guidance on sound insulation

OPTION
(TICK ONE)
AIR BARRIER - OPTIONS

☐ Internal lining, for example, plaster, or

☐ Airtightness tapes
Edge insulation to have a minimum R-value of 1.14 m²K/W

Complying with checklist will help achieve design air permeability

General Notes

Option (Tick One) Air Barrier - Options

- Internal lining, for example, plaster, or
- Airtightness tapes